【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到△BDE,連接DC交AB于點(diǎn)F,則△ACF與△BDF的周長(zhǎng)之和為 cm.

【答案】42
【解析】解:∵將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到△BDE,
∴△ABC≌△BDE,∠CBD=60°,
∴BD=BC=12cm,
∴△BCD為等邊三角形,
∴CD=BC=CD=12cm,
在Rt△ACB中,AB==13,
△ACF與△BDF的周長(zhǎng)之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm),
故答案為:42.
根據(jù)將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到△BDE,可得△ABC≌△BDE,∠CBD=60°,BD=BC=12cm,從而得到△BCD為等邊三角形,得到CD=BC=CD=12cm,在Rt△ACB中,利用勾股定理得到AB=13,所以△ACF與△BDF的周長(zhǎng)之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD,即可解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:(﹣ 1﹣| ﹣1|+2sin60°+(π﹣4)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)店打出促銷廣告:最潮新款服裝30件,每件售價(jià)300元.若一次性購(gòu)買不超過(guò)10件時(shí),售價(jià)不變;若一次性購(gòu)買超過(guò)10件時(shí),每多買1件,所買的每件服裝的售價(jià)均降低3元.已知該服裝成本是每件200元,設(shè)顧客一次性購(gòu)買服裝x件時(shí),該網(wǎng)店從中獲利y元.
(1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍。
(2)顧客一次性購(gòu)買多少件時(shí),該網(wǎng)店從中獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:如圖①,如果四邊形ABCD滿足AB=AD,CB=CD,∠B=∠D=90°,那么我們把這樣的四邊形叫做“完美箏形”.
將一張如圖①所示的“完美箏形”紙片ABCD先折疊成如圖②所示形狀,再展開得到圖③,其中CE,CF為折痕,∠BCE=∠ECF=∠FCD,點(diǎn)B′為點(diǎn)B的對(duì)應(yīng)點(diǎn),點(diǎn)D′為點(diǎn)D的對(duì)應(yīng)點(diǎn),連接EB′,F(xiàn)D′相交于點(diǎn)O.

(1)在平行四邊形、矩形、菱形、正方形四種圖形中,一定為“完美箏形”的是
(2)當(dāng)圖③中的∠BCD=120°時(shí),∠AEB′=
(3)當(dāng)圖②中的四邊形AECF為菱形時(shí),對(duì)應(yīng)圖③中的“完美箏形”有  個(gè)(包含四邊形ABCD).
(4)拓展提升:當(dāng)圖③中的∠BCD=90°時(shí),連接AB′,請(qǐng)?zhí)角蟆螦B′E的度數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某倉(cāng)儲(chǔ)中心有一斜坡AB,其坡度為i=1:2,頂部A處的高AC為4m,B、C在同一水平地面上

(1)求斜坡AB的水平寬度BC。
(2)矩形DEFG為長(zhǎng)方體貨柜的側(cè)面圖,其中DE=2.5m,EF=2m,將該貨柜沿斜坡向上運(yùn)送,當(dāng)BF=3.5m時(shí),求點(diǎn)D離地面的高。(≈2.236,結(jié)果精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)有進(jìn)水管與出水管的容器,從某時(shí)刻開始4min內(nèi)只進(jìn)水不出水,在隨后的8min內(nèi)既進(jìn)水又出水,每分的進(jìn)水量和出水量有兩個(gè)常數(shù),容器內(nèi)的水量y(單位:L)與時(shí)間x(單位:min)之間的關(guān)系如圖所示.

(1)當(dāng)4≤x≤12時(shí),求y關(guān)于x的函數(shù)解析式;
(2)直接寫出每分進(jìn)水,出水各多少升.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=a(x﹣1)2+4與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C,且點(diǎn)B的坐標(biāo)為(3,0),點(diǎn)P在這條拋物線上,且不與B、C兩點(diǎn)重合.過(guò)點(diǎn)P作y軸的垂線與射線BC交于點(diǎn)Q,以PQ為邊作Rt△PQF,使∠PQF=90°,點(diǎn)F在點(diǎn)Q的下方,且QF=1.設(shè)線段PQ的長(zhǎng)度為d,點(diǎn)P的橫坐標(biāo)為m.

(1)求這條拋物線所對(duì)應(yīng)的函數(shù)表達(dá)式.
(2)求d與m之間的函數(shù)關(guān)系式.
(3)當(dāng)Rt△PQF的邊PF被y軸平分時(shí),求d的值.
(4)以O(shè)B為邊作等腰直角三角形OBD,當(dāng)0<m<3時(shí),直接寫出點(diǎn)F落在△OBD的邊上時(shí)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)均為1的正方形網(wǎng)格紙上有一個(gè)△ABC,頂點(diǎn)A、B、C及點(diǎn)O均在格點(diǎn)上,請(qǐng)按要求完成以下操作或運(yùn)算:

(1)將△ABC向上平移4個(gè)單位,得到△A1B1C1(不寫作法,但要標(biāo)出字母)
(2)將△ABC繞點(diǎn)O旋轉(zhuǎn)180°,得到△A2B2C2(不寫作法,但要標(biāo)出字母)
(3)求點(diǎn)A繞著點(diǎn)O旋轉(zhuǎn)到點(diǎn)A2所經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形OABC是邊長(zhǎng)為4的正方形,點(diǎn)P為OA邊上任意一點(diǎn)(與點(diǎn)O、A不重合),連接CP,過(guò)點(diǎn)P作PM⊥CP交AB于點(diǎn)D,且PM=CP,過(guò)點(diǎn)M作MN∥OA,交BO于點(diǎn)N,連接ND、BM,設(shè)OP=t.

(1)求點(diǎn)M的坐標(biāo)(用含t的代數(shù)式表示);
(2)試判斷線段MN的長(zhǎng)度是否隨點(diǎn)P的位置的變化而改變?并說(shuō)明理由.
(3)當(dāng)t為何值時(shí),四邊形BNDM的面積最。

查看答案和解析>>

同步練習(xí)冊(cè)答案