16、如圖,點P是等邊三角形ABC內(nèi)一點,BP=5cm,△PAB繞點B旋轉(zhuǎn)后能與△MCB重合,連接PM,則PM=
5
cm.
分析:旋轉(zhuǎn)問題,旋轉(zhuǎn)之后兩三角形全等,即對應邊,對應角都相等,然后在△PBM中利用∠PBM=60°,可求出PM的長.
解答:解:∵△PAB繞點B旋轉(zhuǎn)后能與△MCB重合,
∴BP=BM,∠ABP=∠CBM,
∵∠ABP+∠PBC=60°,
∴∠CBM+∠PBC=60°,
∴△PBM是等邊三角形,
即PM=BP=5cm.
點評:熟練掌握等邊三角形的性質(zhì),抓住旋轉(zhuǎn)問題的特性,能夠解決一些簡單的旋轉(zhuǎn)問題,
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

.如圖,在平面直角坐標系中,已知點A(0,2),點P是x軸上一動點,以線段AP為一邊,在其一側作等邊三角線APQ。當點P運動到原點O處時,記Q得位置為B。

(1)求點B的坐標;

(2)求證:當點P在x軸上運動(P不與Q重合)時,∠ABQ為定值;

(3)是否存在點P,使得以A、O、Q、B為頂點的四邊形是梯形?若存在,請求出P點的坐標;若不存在,請說明理由。

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

.如圖,在平面直角坐標系中,已知點A(0,2),點P是x軸上一動點,以線段AP為一邊,在其一側作等邊三角線APQ。當點P運動到原點O處時,記Q得位置為B。
(1)求點B的坐標;
(2)求證:當點P在x軸上運動(P不與Q重合)時,∠ABQ為定值;
(3)是否存在點P,使得以A、O、Q、B為頂點的四邊形是梯形?若存在,請求出P點的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(湖南長沙卷)數(shù)學 題型:解答題

.如圖,在平面直角坐標系中,已知點A(0,2),點P是x軸上一動點,以線段AP為一邊,在其一側作等邊三角線APQ。當點P運動到原點O處時,記Q得位置為B。
(1)求點B的坐標;
(2)求證:當點P在x軸上運動(P不與Q重合)時,∠ABQ為定值;
(3)是否存在點P,使得以A、O、Q、B為頂點的四邊形是梯形?若存在,請求出P點的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年山東勝利七中九年級中考二模數(shù)學試卷(解析版) 題型:解答題

如圖,在平面直角坐標系中,已知點A(0,2),點P是x軸上一動點,以線段AP為一邊,在其一側作等邊三角線APQ.當點P運動到原點O處時,記Q的位置為B.

(1)求點B的坐標;

(2)求證:當點P在x軸上運動(P不與O重合)時,∠ABQ為定值;

(3)是否存在點P,使得以A、O、Q、B為頂點的四邊形是梯形?若存在,請求出P點的坐標;若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(湖北黃岡卷)數(shù)學 題型:解答題

.如圖,在平面直角坐標系中,已知點A(0,2),點P是x軸上一動點,以線段AP為一邊,在其一側作等邊三角線APQ。當點P運動到原點O處時,記Q得位置為B。

(1)求點B的坐標;

(2)求證:當點P在x軸上運動(P不與Q重合)時,∠ABQ為定值;

(3)是否存在點P,使得以A、O、Q、B為頂點的四邊形是梯形?若存在,請求出P點的坐標;若不存在,請說明理由。

 

查看答案和解析>>

同步練習冊答案