如圖,P為∠AOB平分線上一點(diǎn),C、D分別在OA、OB上,則PC=PD.

(  )
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

6、一張折疊型方桌子如圖甲,其主視圖如乙,已知AO=BO=50cm,CO=DO=30cm,現(xiàn)將桌子放平,要使桌面a距離地面m為40cm高,則兩條桌腿需要叉開(kāi)的角度∠AOB為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•新區(qū)二模)在圖形的全等變換中,有旋轉(zhuǎn)變換,翻折(軸對(duì)稱(chēng))變換和平移變換.一次數(shù)學(xué)活動(dòng)課上,老師組織大家利用矩形進(jìn)行圖形變換的探究活動(dòng).
(1)第一小組的同學(xué)發(fā)現(xiàn),在如圖1-1的矩形ABCD中,AC、BD相交于點(diǎn)O,Rt△ADC可以由Rt△ABC經(jīng)過(guò)一種變換得到,請(qǐng)你寫(xiě)出這種變換的過(guò)程
將△ABC繞點(diǎn)O旋轉(zhuǎn)180°后可得到△ADC
將△ABC繞點(diǎn)O旋轉(zhuǎn)180°后可得到△ADC


(2)第二小組同學(xué)將矩形紙片ABCD按如下順序進(jìn)行操作:對(duì)折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點(diǎn)B落在EF上的點(diǎn)B′處(如圖2-2),這樣能得到∠B′GC的大小,你知道∠B′GC的大小是多少嗎?請(qǐng)寫(xiě)出求解過(guò)程.
(3)第三小組的同學(xué),在一個(gè)矩形紙片上按照?qǐng)D3-1的方式剪下△ABC,其中BA=BC,將△ABC沿著直線AC的方向依次進(jìn)行平移變換,每次均移動(dòng)AC的長(zhǎng)度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,AC長(zhǎng)為a,現(xiàn)以AD、AF和AH為三邊構(gòu)成一個(gè)新三角形,已知這個(gè)新三角形面積小于15
15
,請(qǐng)你幫助該小組求出a可能的最大整數(shù)值.

(4)探究活動(dòng)結(jié)束后,老師給大家留下了一道探究題:
如圖4-1,已知AA′=BB′=CC′=2,∠AOB′=∠BOC′=∠COA′=60°,請(qǐng)利用圖形變換探究S△AOB′+S△BOC′+S△COA′
3
的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•開(kāi)平區(qū)一模)如圖,一次函數(shù)y=ax+b的圖象與x軸、y軸交于A、B兩點(diǎn),與反比例函數(shù)y=
k
x
的圖象交于C、D兩點(diǎn),分別過(guò)C、D兩點(diǎn)作CE⊥y軸、DF⊥x軸,垂足分別為E、F,連接CF、DE.有下列四個(gè)結(jié)論:
①△CEF與△DEF的面積相等;②△AOB∽△FOE;③∠BAO=45°;④AC=BD.其中正確結(jié)論的序號(hào)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一張折疊型方桌如圖甲,其主視圖如圖乙,已知AO=BO=40cm,C0=D0=30cm,現(xiàn)將桌子放平,兩條桌腿叉開(kāi)的角度∠AOB剛好為120°,則桌面到地面的距離是
35
35
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•龍灣區(qū)二模)如圖,在某圓錐形燈罩的軸截面中,OA=OB,∠AOB=60°,已知一平頂房間高度為3米,若此燈罩的光源O發(fā)出的光線到達(dá)該房間水平地面的最大圓面面積為2.25π平方米(假設(shè)該水平地面足夠大),則點(diǎn)O到此房間頂端的距離約為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案