(2013•鞍山)在一次函數(shù)y=kx+2中,若y隨x的增大而增大,則它的圖象不經(jīng)過第
象限.
分析:先根據(jù)函數(shù)的增減性判斷出k的符號,再根據(jù)一次函數(shù)的圖象與系數(shù)的關(guān)系進(jìn)行解答即可.
解答:解:∵在一次函數(shù)y=kx+2中,y隨x的增大而增大,
∴k>0,
∵2>0,
∴此函數(shù)的圖象經(jīng)過一、二、三象限,不經(jīng)過第四象限.
故答案為:四.
點評:本題考查的是一次函數(shù)的圖象與系數(shù)的關(guān)系,即一次函數(shù)y=kx+b(k≠0)中,當(dāng)k>0,b>0時,函數(shù)的圖象經(jīng)過一、二、三象限.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鞍山一模)在△ABC中,∠C=90°,AC=3cm,BC=4cm,扇形ODF與BC邊相切,切點是E,若FO⊥AB于點O.則扇形的半徑為
60
29
60
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鞍山一模)在平行四邊形ABCD中,∠DAB=60°,點E是AD的中點,點O是AB邊上一點,且AO=AE,過點E作直線HF交DC于點H,交BA的延長線于F,以O(shè)E所在直線為對稱軸,△FEO經(jīng)軸對稱變換后得到△F′EO,直線EF′交直線DC于點M.
(1)求證:AD∥OF′;
(2)若M點在點H右側(cè),OA=4,求DH•DM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鞍山一模)尺規(guī)作圖(保留作圖痕跡)
(1)如圖1,△ABC是等邊三角形,過點A作出BC邊上的高;
(2)如圖2,△ABC為任意三角形,過點B作BD⊥AC于點D;
(3)如圖3,現(xiàn)在有一塊直角三角形鋼板,∠ABC=90°,AC=10,AB=6,工人師傅想用它裁出面積最大的△ABP,且∠APB=60°,請在圖中畫出符合要求的點P(尺規(guī)作圖,保留作圖痕跡)并求出的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鞍山二模)已知拋物線y=ax2+bx+3(a≠0)經(jīng)過A(3,0),B(4,1)兩點,與x軸另一交點為D,與y軸交于點C.
(1)求拋物線y=ax2+bx+3(a≠0)的函數(shù)關(guān)系式;
(2)如圖,連接AC,在拋物線上是否存在點P,使∠ACD+∠ACP=45°?若存在,求出點P的坐標(biāo);若不存在,請說明理由;
(3)連接AC,E為線段AC上任意一點(不與A、C重合)經(jīng)過A、E、O三點的圓交直線AB于點F,
①點E在運動過程中四邊形OEAF的面積是否發(fā)生變化,并說明理由;
②當(dāng)EF分四邊形OEAF的面積為1:2兩部分時,求點E的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案