【題目】20190000用科學(xué)記數(shù)法表示為_____

【答案】2.019×107

【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1|a|10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對值大于10時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值小于1時(shí),n是負(fù)數(shù).

20190000用科學(xué)記數(shù)法表示2.019×107

故答案為2.019×107

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中是假命題的有幾個(gè)( ).

1)過一點(diǎn),有且只有一條直線與已知直線平行.

2)無理數(shù)是開方開不盡的數(shù).

3)所有有理數(shù)都可以用數(shù)軸上的點(diǎn)來表示,反過來,數(shù)軸上的所有點(diǎn)都表示有理數(shù).

40.010.1一個(gè)平方根.

A.1個(gè)B.3個(gè)C.4個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ab1, a2b213,則ab 的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,∠ACB=90°,D是BC的中點(diǎn),DE∥AC,且DE=AC,若AC=2,AD=4,求四邊形ACEB的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下列哪組數(shù)為邊長,可以得到直角三角形的是(  )

A. 9,16,25 B. 8,15,17 C. 6,8,14 D. 10,12,13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC內(nèi)接于O,點(diǎn)C在劣弧AB上(不與點(diǎn)A,B重合),點(diǎn)D為弦BC的中點(diǎn),DEBC,DE與AC的延長線交于點(diǎn)E,射線AO與射線EB交于點(diǎn)F,與O交于點(diǎn)G,設(shè)GAB=ɑ,ACB=β,EAG+EBA=γ,

(1)點(diǎn)點(diǎn)同學(xué)通過畫圖和測量得到以下近似數(shù)據(jù):

ɑ

30°

40°

50°

60°

β

120°

130°

140°

150°

γ

150°

140°

130°

120°

猜想:β關(guān)于ɑ的函數(shù)表達(dá)式,γ關(guān)于ɑ的函數(shù)表達(dá)式,并給出證明:

(2)若γ=135°,CD=3,ABE的面積為ABC的面積的4倍,求O半徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)G在對角線BD上(不與點(diǎn)B,D重合),GEDC于點(diǎn)E,GFBC于點(diǎn)F,連結(jié)AG.

(1)寫出線段AG,GE,GF長度之間的數(shù)量關(guān)系,并說明理由;

(2)若正方形ABCD的邊長為1,AGF=105°,求線段BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形兩邊長分別是 5cm 11cm,則這個(gè)三角形的周長為(

A.16cmB.21cm 27cmC.21cmD.27cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級一班開展了“讀一本好書”的活動(dòng),班委會(huì)對學(xué)生閱讀書籍的情況進(jìn)行了問卷調(diào)查,問卷設(shè)置了“小說”“戲劇”“散文”“其他”四個(gè)類型,每位同學(xué)僅選一項(xiàng),根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.

類別

頻數(shù)(人數(shù))

頻率

小說

0.5

戲劇

4

散文

10

0.25

其他

6

合計(jì)

1

根據(jù)圖表提供的信息,解答下列問題:

(1)八年級一班有多少名學(xué)生?

(2)請補(bǔ)全頻數(shù)分布表,并求出扇形統(tǒng)計(jì)圖中“其他”類所占的百分比;

(3)在調(diào)查問卷中,甲、乙、丙、丁四位同學(xué)選擇了“戲劇”類,現(xiàn)從以上四位同學(xué)中任意選出2名同學(xué)參加學(xué)校的戲劇興趣小組,請用畫樹狀圖或列表法的方法,求選取的2人恰好是乙和丙的概率.

查看答案和解析>>

同步練習(xí)冊答案