(2013•內(nèi)江)如圖,AB是半圓O的直徑,點(diǎn)P在BA的延長(zhǎng)線上,PD切⊙O于點(diǎn)C,BD⊥PD,垂足為D,連接BC.
(1)求證:BC平分∠PBD;
(2)求證:BC2=AB•BD;
(3)若PA=6,PC=6
2
,求BD的長(zhǎng).
分析:(1)連接OC,由PD為圓O的切線,利用切線的性質(zhì)得到OC垂直于PD,由BD垂直于PD,得到OC與BD平行,利用兩直線平行得到一對(duì)內(nèi)錯(cuò)角相等,再由OC=OB,利用等邊對(duì)等角得到一對(duì)角相等,等量代換即可得證;
(2)連接AC,由AB為圓O的直徑,利用直徑所對(duì)的圓周角為直角得到△ABC為直角三角形,根據(jù)一對(duì)直角相等,以及第一問(wèn)的結(jié)論得到一對(duì)角相等,確定出△ABC與△BCD相似,由相似得比例,變形即可得證;
(3)由切割線定理列出關(guān)系式,將PA,PC的長(zhǎng)代入求出PB的長(zhǎng),由PB-PA求出AB的長(zhǎng),確定出圓的半徑,由OC與BD平行得到△PCO與△DPB相似,由相似得比例,將OC,OP,以及PB的長(zhǎng)代入即可求出BD的長(zhǎng).
解答:(1)證明:連接OC,
∵PD為圓O的切線,
∴OC⊥PD,
∵BD⊥PD,
∴OC∥BD,
∴∠OCB=∠CBD,
∵OC=OB,
∴∠OCB=∠OBC,
∴∠CBD=∠OBC,
則BC平分∠PBD;

(2)證明:連接AC,
∵AB為圓O的直徑,
∴∠ACB=90°,
∵∠ACB=∠CDB=90°,∠ABC=∠CBD,
∴△ABC∽△CBD,
AB
CB
=
BC
BD
,即BC2=AB•BD;

(3)解:∵PC為圓O的切線,PAB為割線,
∴PC2=PA•PB,即72=6PB,
解得:PB=12,
∴AB=PB-PA=12-6=6,
∴OC=3,PO=PA+AO=9,
∵△OCP∽△BDP,
OC
BD
=
OP
BP
,即
3
BD
=
9
12
,
則BD=4.
點(diǎn)評(píng):此題考查了切線的性質(zhì),相似三角形的判定與性質(zhì),熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•內(nèi)江)如圖,某校綜合實(shí)踐活動(dòng)小組的同學(xué)欲測(cè)量公園內(nèi)一棵樹(shù)DE的高度,他們?cè)谶@棵樹(shù)的正前方一座樓亭前的臺(tái)階上A點(diǎn)處測(cè)得樹(shù)頂端D的仰角為30°,朝著這棵樹(shù)的方向走到臺(tái)階下的點(diǎn)C處,測(cè)得樹(shù)頂端D的仰角為60°.已知A點(diǎn)的高度AB為3米,臺(tái)階AC的坡度為1:
3
(即AB:BC=1:
3
),且B、C、E三點(diǎn)在同一條直線上.請(qǐng)根據(jù)以上條件求出樹(shù)DE的高度(側(cè)傾器的高度忽略不計(jì)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•內(nèi)江)如圖,反比例函數(shù)y=
k
x
(x>0)的圖象經(jīng)過(guò)矩形OABC對(duì)角線的交點(diǎn)M,分別于AB、BC交于點(diǎn)D、E,若四邊形ODBE的面積為9,則k的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•內(nèi)江)如圖,正六邊形硬紙片ABCDEF在桌面上由圖1的起始位置沿直線l不滑行地翻滾一周后到圖2位置,若正六邊形的邊長(zhǎng)為2cm,則正六邊形的中心O運(yùn)動(dòng)的路程為
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•內(nèi)江)如圖,已知直線l:y=
3
x,過(guò)點(diǎn)M(2,0)作x軸的垂線交直線l于點(diǎn)N,過(guò)點(diǎn)N作直線l的垂線交x軸于點(diǎn)M1;過(guò)點(diǎn)M1作x軸的垂線交直線l于N1,過(guò)點(diǎn)N1作直線l的垂線交x軸于點(diǎn)M2,…;按此作法繼續(xù)下去,則點(diǎn)M10的坐標(biāo)為
(2097152,0)
(2097152,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案