(2013•內江)如圖,AB是半圓O的直徑,點P在BA的延長線上,PD切⊙O于點C,BD⊥PD,垂足為D,連接BC.
(1)求證:BC平分∠PBD;
(2)求證:BC2=AB•BD;
(3)若PA=6,PC=6
2
,求BD的長.
分析:(1)連接OC,由PD為圓O的切線,利用切線的性質得到OC垂直于PD,由BD垂直于PD,得到OC與BD平行,利用兩直線平行得到一對內錯角相等,再由OC=OB,利用等邊對等角得到一對角相等,等量代換即可得證;
(2)連接AC,由AB為圓O的直徑,利用直徑所對的圓周角為直角得到△ABC為直角三角形,根據(jù)一對直角相等,以及第一問的結論得到一對角相等,確定出△ABC與△BCD相似,由相似得比例,變形即可得證;
(3)由切割線定理列出關系式,將PA,PC的長代入求出PB的長,由PB-PA求出AB的長,確定出圓的半徑,由OC與BD平行得到△PCO與△DPB相似,由相似得比例,將OC,OP,以及PB的長代入即可求出BD的長.
解答:(1)證明:連接OC,
∵PD為圓O的切線,
∴OC⊥PD,
∵BD⊥PD,
∴OC∥BD,
∴∠OCB=∠CBD,
∵OC=OB,
∴∠OCB=∠OBC,
∴∠CBD=∠OBC,
則BC平分∠PBD;

(2)證明:連接AC,
∵AB為圓O的直徑,
∴∠ACB=90°,
∵∠ACB=∠CDB=90°,∠ABC=∠CBD,
∴△ABC∽△CBD,
AB
CB
=
BC
BD
,即BC2=AB•BD;

(3)解:∵PC為圓O的切線,PAB為割線,
∴PC2=PA•PB,即72=6PB,
解得:PB=12,
∴AB=PB-PA=12-6=6,
∴OC=3,PO=PA+AO=9,
∵△OCP∽△BDP,
OC
BD
=
OP
BP
,即
3
BD
=
9
12
,
則BD=4.
點評:此題考查了切線的性質,相似三角形的判定與性質,熟練掌握切線的性質是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•內江)如圖,某校綜合實踐活動小組的同學欲測量公園內一棵樹DE的高度,他們在這棵樹的正前方一座樓亭前的臺階上A點處測得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺階下的點C處,測得樹頂端D的仰角為60°.已知A點的高度AB為3米,臺階AC的坡度為1:
3
(即AB:BC=1:
3
),且B、C、E三點在同一條直線上.請根據(jù)以上條件求出樹DE的高度(側傾器的高度忽略不計).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•內江)如圖,反比例函數(shù)y=
k
x
(x>0)的圖象經過矩形OABC對角線的交點M,分別于AB、BC交于點D、E,若四邊形ODBE的面積為9,則k的值為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•內江)如圖,正六邊形硬紙片ABCDEF在桌面上由圖1的起始位置沿直線l不滑行地翻滾一周后到圖2位置,若正六邊形的邊長為2cm,則正六邊形的中心O運動的路程為
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•內江)如圖,已知直線l:y=
3
x,過點M(2,0)作x軸的垂線交直線l于點N,過點N作直線l的垂線交x軸于點M1;過點M1作x軸的垂線交直線l于N1,過點N1作直線l的垂線交x軸于點M2,…;按此作法繼續(xù)下去,則點M10的坐標為
(2097152,0)
(2097152,0)

查看答案和解析>>

同步練習冊答案