如圖,已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,的半徑為1,過作直線平行于軸,點(diǎn)上運(yùn)動(dòng).

(1)當(dāng)點(diǎn)運(yùn)動(dòng)到圓上時(shí),求線段的長(zhǎng).

(2)當(dāng)點(diǎn)的坐標(biāo)為時(shí),試判斷直線的位置關(guān)系,并說明理由.

 

【答案】

解:(1)如圖,設(shè)軸交點(diǎn)為

當(dāng)點(diǎn)運(yùn)動(dòng)到圓上時(shí),有兩個(gè)位置

,

(2)連接,過,垂足為

,

中,

,

直線相離.

【解析】(1)畫出圖形可知點(diǎn)所在的位置兩種情況,利用直角三角形的勾股定理即可求出線段的長(zhǎng)

(2)判斷直線與圓的位置關(guān)系,是要比較圓心到直線的距離與圓的半徑之間的大小,過,垂足為,利用勾股定理及相似三角形的對(duì)應(yīng)邊成比例,求出的即可,由于,故直線相離

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知過坐標(biāo)原點(diǎn)的拋物線經(jīng)過A(x1,0),B(x2,3)兩點(diǎn),且x1、x2是方程x2+5x+6=0兩根(x1>x2),拋物線頂點(diǎn)為C.
(1)求拋物線的解析式;
(2)若點(diǎn)D在拋物線上,點(diǎn)E在拋物線的對(duì)稱軸上,且以A、O、D、E為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)E的坐標(biāo);
(3)P是拋物線上的動(dòng)點(diǎn),過點(diǎn)P作PM⊥x軸,垂足為M,是否存在點(diǎn)P使得以點(diǎn)P、M、O為頂點(diǎn)的三角形與△BOC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:江蘇省鹽城市亭湖區(qū)2012屆九年級(jí)下學(xué)期第一次調(diào)研考試數(shù)學(xué)試題 題型:044

如圖,已知○為坐標(biāo)原點(diǎn),∠AOB=30°,∠ABO=90°,且點(diǎn)A的坐標(biāo)為(2,0).

(1)求點(diǎn)B的坐標(biāo);

(2)若二次函數(shù)y=ax+bx+c的圖象經(jīng)過A、B、O三點(diǎn),求此二次函數(shù)的解析式;

(3)在(2)中的二次函數(shù)圖象的OB段(不包括點(diǎn)O、B)上,是否存在一點(diǎn)C,使得四邊形ABCO的面積最大?若存在,求出這個(gè)最大值及此時(shí)點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年初中畢業(yè)升學(xué)考試(內(nèi)蒙古呼和浩特卷)數(shù)學(xué)(帶解析) 題型:解答題

如圖,已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,的半徑為1,過作直線平行于軸,點(diǎn)上運(yùn)動(dòng).
(1)當(dāng)點(diǎn)運(yùn)動(dòng)到圓上時(shí),求線段的長(zhǎng).
(2)當(dāng)點(diǎn)的坐標(biāo)為時(shí),試判斷直線的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省蘇州市高新區(qū)九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知過坐標(biāo)原點(diǎn)的拋物線經(jīng)過A(x1,0),B(x2,3)兩點(diǎn),且x1、x2是方程x2+5x+6=0兩根(x1>x2),拋物線頂點(diǎn)為C.
(1)求拋物線的解析式;
(2)若點(diǎn)D在拋物線上,點(diǎn)E在拋物線的對(duì)稱軸上,且以A、O、D、E為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)E的坐標(biāo);
(3)P是拋物線上的動(dòng)點(diǎn),過點(diǎn)P作PM⊥x軸,垂足為M,是否存在點(diǎn)P使得以點(diǎn)P、M、O為頂點(diǎn)的三角形與△BOC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案