【題目】求代數(shù)式5(2a2b ab2) 3(ab2 + 3a2b)的值,其中a = 2,b = 1.

【答案】8.

【解析】原式去括號合并得到最簡結(jié)果,把a(bǔ)與b 的值代入計(jì)算即可求出值.

解:原式=10a2b5ab+3 ab9 a2b

= a2b 2ab

a=2,b=-1代入得,原式=8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從地面上的點(diǎn)A看一山坡上的電線桿PQ,測得桿頂端點(diǎn)P的仰角是45°,向前走6m到達(dá)B點(diǎn),測得桿頂端點(diǎn)P和桿底端點(diǎn)Q的仰角分別是60°30°

1)求BPQ的度數(shù);

2)求該電線桿PQ的高度(結(jié)果精確到1m).

備用數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究:

如圖,拋物線y=x2x﹣4x軸交與A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸交于點(diǎn)C,連接BC,以BC為一邊,點(diǎn)O為對稱中心作菱形BDEC,點(diǎn)Px軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)Px軸的垂線l交拋物線于點(diǎn)Q

1)求點(diǎn)A,B,C的坐標(biāo).

2)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),直線l分別交BDBC于點(diǎn)MN.試探究m為何值時(shí),四邊形CQMD是平行四邊形,此時(shí),請判斷四邊形CQBM的形狀,并說明理由.

3)當(dāng)點(diǎn)P在線段EB上運(yùn)動(dòng)時(shí),是否存在點(diǎn)Q,使BDQ為直角三角形?若存在,請直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

考點(diǎn):二次函數(shù)綜合題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P(3,﹣4)在第 象限,與x軸距離是 ,與y軸距離是 ,與原點(diǎn)距離是 ;點(diǎn)P關(guān)于x軸對稱的點(diǎn)Q坐標(biāo)為 ,P關(guān)于y軸對稱點(diǎn)M坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2014年金華市實(shí)現(xiàn)生產(chǎn)總值(GDP)3206億元,按可比價(jià)計(jì)算,比上年增長8.3%.用科學(xué)記數(shù)法表示2014年金華市的生產(chǎn)總值為( )
A.32.06×1012
B.3.206×1011
C.3.206×1010
D.3.206×1012

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列幾何體的截面一定是圓的是( )

A. 圓柱 B. 圓錐 C. D. 正方體

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=(k﹣2)x﹣3k2+12.

(1)k為何值時(shí),圖象經(jīng)過原點(diǎn);

(2)k為何值時(shí),圖象與直線y=﹣2x+9的交點(diǎn)在y軸上;

(3)k為何值時(shí),圖象平行于y=﹣2x的圖象;

(4)k為何值時(shí),y隨x增大而減小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC△A′B′C中,∠A=∠A′,CDC′D′分別為AB邊和A′B′邊上的中線,再從以下三個(gè)條件:①AB=A′B′②AC=A′C′;③CD=C′D′中任取兩個(gè)為題設(shè),另一個(gè)作為結(jié)論,請寫出一個(gè)正確的命題:________(用題序號寫).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,ABDC,AB=16cm,CD=10cm,AD=5cm DEAB,垂足為E,點(diǎn)P從點(diǎn)A出發(fā),以2cm/秒的速度沿AB向終點(diǎn)B運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C出發(fā),以1cm/秒的速度沿CD向終點(diǎn)D運(yùn)動(dòng)(P,Q兩點(diǎn)中,有一個(gè)點(diǎn)運(yùn)動(dòng)到終點(diǎn)時(shí),所有運(yùn)動(dòng)即終止),設(shè)P,Q同時(shí)出發(fā)并運(yùn)動(dòng)了t秒.

(1)當(dāng)四邊形EPQD為矩形時(shí),求t的值.

(2)當(dāng)以點(diǎn)E、P、C、Q為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值;

(3)探索:是否存在這樣的t值,使三角形PDQ是以PD為腰的等腰三角形?若存在,求出t的值,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案