(2013•江西)如圖,?ABCD與?DCFE的周長相等,且∠BAD=60°,∠F=110°,則∠DAE的度數(shù)為
25°
25°
分析:由,?ABCD與?DCFE的周長相等,可得到AD=DE即△ADE是等腰三角形,再由且∠BAD=60°,∠F=110°,即可求出∠DAE的度數(shù).
解答:解:∵?ABCD與?DCFE的周長相等,且CD=CD,
∴AD=DE,
∵∠DAE=∠DEA,
∵∠BAD=60°,∠F=110°,
∴∠ADC=120°,∠CDE═∠F=110°,
∴∠ADE=360°-120°-110°=130°,
∴∠DAE=
180°-130°
2
=25°,
故答案為:25°.
點(diǎn)評:本題考查了平行四邊形的性質(zhì):平行四邊形的對邊相等、平行四邊形的對角相等以及鄰角互補(bǔ)和等腰三角形的判定和性質(zhì)、三角形的內(nèi)角和定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•江西模擬)甲、乙兩車同時(shí)從M地出發(fā),以各自的速度勻速向N地行駛.甲車先到達(dá)N地,停留1h后按原路以另一速度勻速返回,直到兩車相遇,乙車的速度為60km/h.如圖是兩車之間的距離y(km)與乙車行駛時(shí)間x(h)之間的函數(shù)圖象.以下結(jié)論正確的是
①甲車從M地到N地的速度為100km/h;
②M、N兩地之間相距120km;
③點(diǎn)A的坐標(biāo)為(4,60);
④當(dāng)4≤x≤4.4時(shí),函數(shù)解析式為y=-150x+660;
⑤甲車返回時(shí)行駛速度為100km/h.( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•江西)如圖,矩形ABCD中,點(diǎn)E、F分別是AB、CD的中點(diǎn),連接DE和BF,分別取DE、BF的中點(diǎn)M、N,連接AM,CN,MN,若AB=2
2
,BC=2
3
,則圖中陰影部分的面積為
2
6
2
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•江西)如圖,在平面直角坐標(biāo)系中,以點(diǎn)O為圓心,半徑為2的圓與y軸交點(diǎn)A,點(diǎn)P(4,2)是⊙O外一點(diǎn),連接AP,直線PB與⊙O相切于點(diǎn)B,交x軸于點(diǎn)C.
(1)證明PA是⊙O的切線;
(2)求點(diǎn)B的坐標(biāo);
(3)求直線AB的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•江西)某學(xué);顒(dòng)小組在作三角形的拓展圖形,研究其性質(zhì)時(shí),經(jīng)歷了如下過程:
●操作發(fā)現(xiàn):
在等腰△ABC中,AB=AC,分別以AB和AC為斜邊,向△ABC的外側(cè)作等腰直角三角形,如圖1所示,其中DF⊥AB于點(diǎn)F,EG⊥AC于點(diǎn)G,M是BC的中點(diǎn),連接MD和ME,則下列結(jié)論正確的是
①②③④
①②③④
(填序號即可)
①AF=AG=
12
AB;②MD=ME;③整個(gè)圖形是軸對稱圖形;④∠DAB=∠DMB.
●數(shù)學(xué)思考:
在任意△ABC中,分別以AB和AC為斜邊,向△ABC的外側(cè)作等腰直角三角形,如圖2所示,M是BC的中點(diǎn),連接MD和ME,則MD與ME具有怎樣的數(shù)量和位置關(guān)系?請給出證明過程;
●類比探究:
在任意△ABC中,仍分別以AB和AC為斜邊,向△ABC的內(nèi)側(cè)作等腰直角三角形,如圖3所示,M是BC的中點(diǎn),連接MD和ME,試判斷△MED的形狀.答:
等腰直角三角形
等腰直角三角形

查看答案和解析>>

同步練習(xí)冊答案