兩直線相交于y軸上一點(diǎn)A,分別交x軸與B,C,且兩直線互相垂直,若點(diǎn)A坐標(biāo)為(0,1),B點(diǎn)坐標(biāo)為(2,0),則點(diǎn)C的坐標(biāo)為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
A
分析:易證△OAB∽△ACB,即可求得=,已知AB、OA、OB即可求得OC的長(zhǎng),即可解題.
解答:解:∵∠BAC=90°,∠BOA=90°
∴△OAB∽△ACB,
==
∴AC=,
故OC=
∴C點(diǎn)坐標(biāo)為(-,0).
故選A.
點(diǎn)評(píng):本題考查了相似三角形的證明,相似三角形對(duì)應(yīng)邊比值相等相等的性質(zhì),本題中求證△OAB∽△ACB是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

“三等分角”是數(shù)學(xué)史上一個(gè)著名的問題,但僅用尺規(guī)不可能“三等分角”.下面是數(shù)學(xué)家帕普斯借助函數(shù)給出的一種“三等分銳角”的方法(如圖):將給定的銳角∠AOB置于直角坐標(biāo)系中,邊OB在x軸上、邊OA與函數(shù)y=
1
x
的圖象交于點(diǎn)P,以P為圓心、以2OP為半徑作弧交圖象于點(diǎn)R.分別過點(diǎn)P和R作x軸和y軸的平行線,兩直線相交于點(diǎn)M,連接OM得到∠MOB,則∠MOB=
1
3
∠AOB.要明白帕普斯的方法,請(qǐng)研究以下問題:
(1)設(shè)P(a,
1
a
)、R(b,
1
b
),求直線OM對(duì)應(yīng)的函數(shù)表達(dá)式(用含a,b的代數(shù)式表示);
(2)分別過點(diǎn)P和R作y軸和x軸的平行線,兩直線相交于點(diǎn)Q.請(qǐng)說明Q點(diǎn)在直線OM上,并據(jù)此證明精英家教網(wǎng)∠MOB=
1
3
∠AOB;
(3)應(yīng)用上述方法得到的結(jié)論,你如何三等分一個(gè)鈍角(用文字簡(jiǎn)要說明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)“三等分角”是數(shù)學(xué)史上一個(gè)著名問題,但數(shù)學(xué)家已經(jīng)證明,僅用尺規(guī)不可能“三等分任意角”.但對(duì)于特定度數(shù)的已知角,如90°角、45°角等,是可以用尺規(guī)進(jìn)行三等分的.如圖a,∠AOB=90°,我們?cè)谶匫B上取一點(diǎn)C,用尺規(guī)以O(shè)C為一邊向∠AOB內(nèi)部作等邊△OCD,作射線OD,再用尺規(guī)作出∠DOB的角平分線OE,則射線OD、OE將∠AOB三等分.仔細(xì)體會(huì)一下其中的道理,然后用尺規(guī)把圖b中的∠MON三等分(已知∠MON=45°).(不需寫作法,但需保留作圖痕跡,允許適當(dāng)添加文字的說明)
精英家教網(wǎng)
(2)數(shù)學(xué)家帕普斯借助函數(shù)給出了一種“三等分銳角”的方法(如圖c):將給定的銳角∠AOB置于直角坐標(biāo)系中,邊OB在x軸上、邊OA與函數(shù)y=
1
x
的圖象交于點(diǎn)P,以P為圓心、2OP長(zhǎng)為半徑作弧交圖象于點(diǎn)R.分別過點(diǎn)P和R作x軸和y軸的平行線,兩直線相交于點(diǎn)M,連接OM得到∠MOB,則∠MOB=
1
3
∠AOB.要明白帕普斯的方法,請(qǐng)研究以下問題:
①設(shè)P(a,
1
a
)、R(b,
1
b
),求直線OM對(duì)應(yīng)的函數(shù)關(guān)系式(用含a、b的代數(shù)式表示).
②分別過點(diǎn)P和R作y軸和x軸的平行線,兩直線相交于點(diǎn)Q.請(qǐng)說明Q點(diǎn)在直線OM上,并據(jù)此證明∠MOB=
1
3
∠AOB.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

數(shù)學(xué)家帕普斯借助函數(shù)給出一種“三等分銳角”的方法,步驟如下:
①將銳角∠AOB置于平面直角坐標(biāo)系中,其中以點(diǎn)O為坐標(biāo)原點(diǎn),邊OB在x軸上;
②邊OA與函數(shù)y=
1
x
(x>0)
的圖象交于點(diǎn)P,以P為圓心,2倍OP的長(zhǎng)為半徑作弧,在∠AOB內(nèi)部交函數(shù)y=
1
x
(x>0)
的圖象于點(diǎn)R;
③過點(diǎn)P作x軸的平行線,過點(diǎn)R作y軸的平行線,兩直線相交于點(diǎn)M,連結(jié)OM.則∠MOB=
1
3
∠AOB.
請(qǐng)根據(jù)以上材料,完成下列問題:

(1)應(yīng)用上述方法在圖1中畫出∠AOB的三等分線OM;
(2)設(shè)P(a,
1
a
),R(b,
1
b
)
,求直線OM對(duì)應(yīng)的函數(shù)表達(dá)式(用含a,b的代數(shù)式表示);
(3)證明:∠MOB=
1
3
∠AOB;
(4)應(yīng)用上述方法,請(qǐng)嘗試將圖2所示的鈍角三等分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第1章《反比例函數(shù)》中考題集(26):1.3 實(shí)際生活中的反比例函數(shù)(解析版) 題型:解答題

“三等分角”是數(shù)學(xué)史上一個(gè)著名的問題,但僅用尺規(guī)不可能“三等分角”.下面是數(shù)學(xué)家帕普斯借助函數(shù)給出的一種“三等分銳角”的方法(如圖):將給定的銳角∠AOB置于直角坐標(biāo)系中,邊OB在x軸上、邊OA與函數(shù)y=的圖象交于點(diǎn)P,以P為圓心、以2OP為半徑作弧交圖象于點(diǎn)R.分別過點(diǎn)P和R作x軸和y軸的平行線,兩直線相交于點(diǎn)M,連接OM得到∠MOB,則∠MOB=∠AOB.要明白帕普斯的方法,請(qǐng)研究以下問題:
(1)設(shè)P(a,)、R(b,),求直線OM對(duì)應(yīng)的函數(shù)表達(dá)式(用含a,b的代數(shù)式表示);
(2)分別過點(diǎn)P和R作y軸和x軸的平行線,兩直線相交于點(diǎn)Q.請(qǐng)說明Q點(diǎn)在直線OM上,并據(jù)此證明∠MOB=∠AOB;
(3)應(yīng)用上述方法得到的結(jié)論,你如何三等分一個(gè)鈍角(用文字簡(jiǎn)要說明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年廣東省佛山市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•佛山)“三等分角”是數(shù)學(xué)史上一個(gè)著名的問題,但僅用尺規(guī)不可能“三等分角”.下面是數(shù)學(xué)家帕普斯借助函數(shù)給出的一種“三等分銳角”的方法(如圖):將給定的銳角∠AOB置于直角坐標(biāo)系中,邊OB在x軸上、邊OA與函數(shù)y=的圖象交于點(diǎn)P,以P為圓心、以2OP為半徑作弧交圖象于點(diǎn)R.分別過點(diǎn)P和R作x軸和y軸的平行線,兩直線相交于點(diǎn)M,連接OM得到∠MOB,則∠MOB=∠AOB.要明白帕普斯的方法,請(qǐng)研究以下問題:
(1)設(shè)P(a,)、R(b,),求直線OM對(duì)應(yīng)的函數(shù)表達(dá)式(用含a,b的代數(shù)式表示);
(2)分別過點(diǎn)P和R作y軸和x軸的平行線,兩直線相交于點(diǎn)Q.請(qǐng)說明Q點(diǎn)在直線OM上,并據(jù)此證明∠MOB=∠AOB;
(3)應(yīng)用上述方法得到的結(jié)論,你如何三等分一個(gè)鈍角(用文字簡(jiǎn)要說明).

查看答案和解析>>

同步練習(xí)冊(cè)答案