(2012•丹東)甲、乙兩工程隊(duì)同時(shí)修筑水渠,且兩隊(duì)所修水渠總長(zhǎng)度相等.如圖是兩隊(duì)所修水渠長(zhǎng)度y(米)與修筑時(shí)間x(時(shí))的函數(shù)圖象的一部分.請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)①直接寫(xiě)出甲隊(duì)在0≤x≤5的時(shí)間段內(nèi),y與x之間的函數(shù)關(guān)系式
y=10x
y=10x
;
②直接寫(xiě)出乙隊(duì)在2≤x≤5的時(shí)間段內(nèi),y與x之間的函數(shù)關(guān)系式
y=20x-30
y=20x-30

(2)求開(kāi)修幾小時(shí)后,乙隊(duì)修筑的水渠長(zhǎng)度開(kāi)始超過(guò)甲隊(duì)?
(3)如果甲隊(duì)施工速度不變,乙隊(duì)在修筑5小時(shí)后,施工速度因故減少到5米/時(shí),結(jié)果兩隊(duì)同時(shí)完成任務(wù),求乙隊(duì)從開(kāi)修到完工所修水渠的長(zhǎng)度為多少米?
分析:(1)甲的圖象是過(guò)原點(diǎn)的直線,過(guò)(5,50),乙隊(duì)在2≤x≤5的時(shí)間段內(nèi)是一次函數(shù),可以利用待定系數(shù)法求得函數(shù)的解析式;
(2)乙隊(duì)修筑的水渠長(zhǎng)度開(kāi)始超過(guò)甲隊(duì),則20x-30>10x,據(jù)此即可求得x的范圍;
(3)乙隊(duì)從開(kāi)修到完工所修水渠的長(zhǎng)度為m米,乙隊(duì)在修筑5小時(shí)后,甲剩余m-50米,乙剩余m-70米,根據(jù)兩隊(duì)同時(shí)完成任務(wù),即時(shí)間相等,即可列方程求解.
解答:解:(1)①設(shè)函數(shù)的解析式是y=kx,根據(jù)題意得:5k=50,解得:k=10,
則甲的函數(shù)解析式是:y=10x.
②設(shè)函數(shù)的解析式是:y=mx+b,
根據(jù)題意得:
2m+b=10
5m+b=70
,
解得:
m=20
b=-30

則函數(shù)解析式是:y=20x-30.

(2)根據(jù)題意得:20x-30>10x,
20x-10x>30,
解得:x>3.    
故開(kāi)修3小時(shí)后,乙隊(duì)修筑的水渠長(zhǎng)度開(kāi)始超過(guò)甲隊(duì).

(3)由圖象得,甲隊(duì)的速度是50÷5=10(米/時(shí))
設(shè):乙隊(duì)從開(kāi)修到完工所修水渠的長(zhǎng)度為m米.
根據(jù)題意得:
m-50
10
=
m-70
5

解得:m=90.
答:乙隊(duì)從開(kāi)修到完工所修水渠的長(zhǎng)度為90米.
點(diǎn)評(píng):本題考查的是用一次函數(shù)解決實(shí)際問(wèn)題,待定系數(shù)法求函數(shù)的解析式,以及列方程解應(yīng)用題,此類(lèi)題是近年中考中的熱點(diǎn)問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

同步練習(xí)冊(cè)答案