(2010•欽州)如圖,?ABCD的對角線AC、BD相交于點O,點E是CD的中點,若AD=4cm,則OE的長為    cm.
【答案】分析:先說明OE是△ACD的中位線,再根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半求解.
解答:解:∵?ABCD的對角線AC、BD相交于點O,
∴OA=OC,
∵點E是CD的中點,
∴CE=DE,
∴OE是△ACD的中位線,
∵AD=4cm,
∴OE=AD=×4=2cm.
故答案為2.
點評:本題運用了平行四邊形的對角線互相平分這一性質(zhì)和三角形的中位線定理.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(02)(解析版) 題型:選擇題

(2010•欽州)如圖,為測量一幢大樓的高度,在地面上距離樓底O點20m的點A處,測得樓頂B點的仰角∠OAB=65°,則這幢大樓的高度為(結(jié)果保留3個有效數(shù)字)( )

A.42.8m
B.42.80m
C.42.9m
D.42.90m

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《三角形》(11)(解析版) 題型:解答題

(2010•欽州)如圖,將OA=6,AB=4的矩形OABC放置在平面直角坐標系中,動點M、N以每秒1個單位的速度分別從點A、C同時出發(fā),其中點M沿AO向終點O運動,點N沿CB向終點B運動,當兩個動點運動了t秒時,過點N作NP⊥BC,交OB于點P,連接MP.
(1)點B的坐標為______;用含t的式子表示點P的坐標為______;
(2)記△OMP的面積為S,求S與t的函數(shù)關系式(0<t<6);并求t為何值時,S有最大值?
(3)試探究:當S有最大值時,在y軸上是否存在點T,使直線MT把△ONC分割成三角形和四邊形兩部分,且三角形的面積是△ONC面積的?若存在,求出點T的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣西欽州市中考數(shù)學試卷(解析版) 題型:解答題

(2010•欽州)如圖,將OA=6,AB=4的矩形OABC放置在平面直角坐標系中,動點M、N以每秒1個單位的速度分別從點A、C同時出發(fā),其中點M沿AO向終點O運動,點N沿CB向終點B運動,當兩個動點運動了t秒時,過點N作NP⊥BC,交OB于點P,連接MP.
(1)點B的坐標為______;用含t的式子表示點P的坐標為______;
(2)記△OMP的面積為S,求S與t的函數(shù)關系式(0<t<6);并求t為何值時,S有最大值?
(3)試探究:當S有最大值時,在y軸上是否存在點T,使直線MT把△ONC分割成三角形和四邊形兩部分,且三角形的面積是△ONC面積的?若存在,求出點T的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣西欽州市中考數(shù)學試卷(解析版) 題型:選擇題

(2010•欽州)如圖,為測量一幢大樓的高度,在地面上距離樓底O點20m的點A處,測得樓頂B點的仰角∠OAB=65°,則這幢大樓的高度為(結(jié)果保留3個有效數(shù)字)( )

A.42.8m
B.42.80m
C.42.9m
D.42.90m

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣西欽州市中考數(shù)學試卷(解析版) 題型:選擇題

(2010•欽州)如圖是一張直角三角形的紙片,兩直角邊AC=6cm、BC=8cm,現(xiàn)將△ABC折疊,使點B與點A重合,折痕為DE,則BE的長為( )

A.4cm
B.5cm
C.6cm
D.10cm

查看答案和解析>>

同步練習冊答案