【題目】如圖1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以O(shè)B為一邊,在△OAB外作等邊三角形OBC,D是OB的中點(diǎn),連接AD并延長交OC于E.
(1)求點(diǎn)B的坐標(biāo);
(2)求證:四邊形ABCE是平行四邊形;
(3)如圖2,將圖1中的四邊形ABCO折疊,使點(diǎn)C與點(diǎn)A重合,折痕為FG,求OG的長.
【答案】
(1)解:在△OAB中,∠OAB=90°,∠AOB=30°,OB=8,
∴OA=OBcos30°=8× =4 ,
AB=OBsin30°=8× =4,
∴點(diǎn)B的坐標(biāo)為(4 ,4)
(2)證明:∵∠OAB=90°,
∴AB⊥x軸,
∵y軸⊥x軸,
∴AB∥y軸,即AB∥CE,
∵∠AOB=30°,
∴∠OBA=60°,
∵DB=DO=4
∴DB=AB=4
∴∠BDA=∠BAD=120°÷2=60°,
∴∠ADB=60°,
∵△OBC是等邊三角形,
∴∠OBC=60°,
∴∠ADB=∠OBC,
即AD∥BC,
∴四邊形ABCE是平行四邊形
(3)解:設(shè)OG的長為x,
∵OC=OB=8,
∴CG=8﹣x,
由折疊的性質(zhì)可得:AG=CG=8﹣x,
在Rt△AOG中,AG2=OG2+OA2,
即(8﹣x)2=x2+(4 )2,
解得:x=1,
即OG=1
【解析】(1)由在△ABO中,∠OAB=90°,∠AOB=30°,OB=8,根據(jù)三角函數(shù)的知識,即可求得AB與OA的長,即可求得點(diǎn)B的坐標(biāo);(2)首先可得CE∥AB,D是OB的中點(diǎn),根據(jù)直角三角形斜邊的中線等于斜邊的一半,可證得BD=AD,∠ADB=60°,又由△OBC是等邊三角形,可得∠ADB=∠OBC,根據(jù)內(nèi)錯角相等,兩直線平行,可證得BC∥AE,繼而可得四邊形ABCD是平行四邊形;(3)首先設(shè)OG的長為x,由折疊的性質(zhì)可得:AG=CG=8﹣x,然后根據(jù)勾股定理可得方程(8﹣x)2=x2+(4 )2 , 解此方程即可求得OG的長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的函數(shù)y=(2﹣a)x2﹣x是二次函數(shù),則a的取值范圍是( )
A.a≠0
B.a≠2
C.a<2
D.a>2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,點(diǎn)E,F(xiàn)分別在AB,CD邊上,BE=DF,連接CE,AF.求證:AF=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖,下列四個幾何體中,它們各自的三視圖(主視圖、左視圖、俯視圖)有兩個相同,而另一個不同的幾何體是 ( )
A.①②
B.②③
C.②④
D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我市開展的“陽光體育”跳繩活動中,為了了解中學(xué)生跳繩活動的開展情況,隨機(jī)抽查了全市八年級部分同學(xué)1分鐘跳繩的次數(shù),將抽查結(jié)果進(jìn)行統(tǒng)計(jì),并繪制兩個不完整的統(tǒng)計(jì)圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)本次共抽查了多少名學(xué)生?
(2)請補(bǔ)全頻數(shù)分布直方圖空缺部分,直接寫出扇形統(tǒng)計(jì)圖中跳繩次數(shù)范圍135≤x≤155所在扇形的圓心角度數(shù).
(3)若本次抽查中,跳繩次數(shù)在125次以上(含125次)為優(yōu)秀,請你估計(jì)全市8000名八年級學(xué)生中有多少名學(xué)生的成績?yōu)閮?yōu)秀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在平行四邊形ABCD中,對角線AC與BD交于點(diǎn)O,過點(diǎn)O的直線EF分別與AD、BC交于點(diǎn)E、F,EF⊥AC,連結(jié)AF、CE.
(1)求證:OE=OF;
(2)請判斷四邊形AECF是什么特殊四邊形,請證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com