【題目】如圖,在正方形ABCD中,對角線AC與BD相交于點O,點E是BC上的一個動點,連接DE,交AC于點F.
(1)如圖①,當 時,求 的值;
(2)如圖②當DE平分∠CDB時,求證:AF= OA;
(3)如圖③,當點E是BC的中點時,過點F作FG⊥BC于點G,求證:CG= BG.
【答案】
(1)
解:∵ ,
∴ .
∵四邊形ABCD是正方形,
∴AD∥BC,AD=BC,
∴△CEF∽△ADF,
∴ ,
∴ = ,
∴ = = ;
(2)
證明:∵DE平分∠CDB,∴∠ODF=∠CDF,
又∵AC、BD是正方形ABCD的對角線.
∴∠ADO=∠FCD=45°,∠AOD=90°,OA=OD,而∠ADF=∠ADO+∠ODF,∠AFD=∠FCD+∠CDF,
∴∠ADF=∠AFD,∴AD=AF,
在直角△AOD中,根據勾股定理得:AD= = OA,
∴AF= OA
(3)
證明:連接OE.
∵點O是正方形ABCD的對角線AC、BD的交點.
∴點O是BD的中點.
又∵點E是BC的中點,
∴OE是△BCD的中位線,
∴OE∥CD,OE= CD,
∴△OFE∽△CFD.
∴ = = ,
∴ = .
又∵FG⊥BC,CD⊥BC,
∴FG∥CD,
∴△EGF∽△ECD,
∴ = = .
在直角△FGC中,∵∠GCF=45°.
∴CG=GF,
又∵CD=BC,
∴ = = ,
∴ = .
∴CG= BG.
【解析】(1)利用相似三角形的性質求得EF與DF的比值,依據△CEF和△CDF同高,則面積的比就是EF與DF的比值,據此即可求解;(2)利用三角形的外角和定理證得∠ADF=∠AFD,可以證得AD=AF,在直角△AOD中,利用勾股定理可以證得;(3)連接OE,易證OE是△BCD的中位線,然后根據△FGC是等腰直角三角形,易證△EGF∽△ECD,利用相似三角形的對應邊的比相等即可證得.
【考點精析】解答此題的關鍵在于理解相似三角形的判定與性質的相關知識,掌握相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方,以及對相似三角形的應用的理解,了解測高:測量不能到達頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達兩點間的舉例,常構造相似三角形求解.
科目:初中數學 來源: 題型:
【題目】根據直角三角形的判定的知識解決下列問題
(1)如圖①所示,P是等邊△ABC內的一點,連接PA、PB、PC,將△BAP繞B點順時針旋轉60°得△BCQ,連接PQ.若PA2+PB2=PC2,證明∠PQC=90°;
(2)如圖②所示,P是等腰直角△ABC(∠ABC=90°)內的一點,連接PA、PB、PC,將△BAP繞B點順時針旋轉90°得△BCQ,連接PQ.當PA、PB、PC滿足什么條件時,∠PQC=90°?請說明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點D,DE⊥AC,垂足為點E.
(1)求證:點D是AB的中點;
(2)判斷DE與⊙O的位置關系,并證明你的結論;
(3)若⊙O的直徑為18,cosB= ,求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E,F分別在邊AB,BC上,且AE= AB,將矩形沿直線EF折疊,點B恰好落在AD邊上的點P處,連接BP交EF于點Q,對于下列結論:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等邊三角形.其中正確的是(填序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為半圓O的直徑,CD切⊙O于點E,AD、BC分別切⊙O于A、B兩點,AD與CD相交于D,BC與CD相交于C,連接OD、OC,對于下列結論:①OD2=DECD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CDOA;⑤∠DOC=90°;⑥若切點E在半圓上運動(A、B兩點除外),則線段AD與BC的積為定值.其中正確的個數是( )
A.5
B.4
C.3
D.2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】4月26日,2015黃河口(東營)國際馬拉松比賽拉開帷幕,中央電視臺體育頻道用直升機航拍技術全程直播.如圖,在直升機的鏡頭下,觀測馬拉松景觀大道A處的俯角為30°,B處的俯角為45°.如果此時直升機鏡頭C處的高度CD為200米,點A、D、B在同一直線上,則AB兩點的距離是米.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com