如圖,△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,∠C=45°,求∠DAE與∠AEC的度數(shù).

解:方法1:
∵∠B+∠C+∠BAC=180°,∠B=75°,∠C=45°,
∴∠BAC=60°,
∵AE平分∠BAC,
∴∠BAE=∠CAE=∠BAC=×60°=30°,
∵AD是BC上的高,
∴∠B+∠BAD=90°,
∴∠BAD=90°-∠B=90°-75°=15°,
∴∠DAE=∠BAE-∠BAD=30°-15°=15°,
在△AEC中,∠AEC=180°-∠C-∠CAE=180°-45°-30°=105°;

方法2:同方法1,得出∠BAC=60°.
∵AE平分∠BAC,
∴∠EAC=∠BAC=×60°=30°.
∵AD是BC上的高,
∴∠C+∠CAD=90°,
∴∠CAD=90°-45°=45°,
∴∠DAE=∠CAD-∠CAE=45°-30°=15°.
∵∠AEC+∠C+∠EAC=180°,
∴∠AEC+30°+45°=180°,
∴∠AEC=105°.
答:∠DAE=15°,∠AEC=105°.
分析:由∠B=75°,∠C=45°,利用三角形內(nèi)角和求出∠BAC.又AE平分∠BAC,求出∠BAE、∠CAE.再利用AD是BC上的高在△ABD中求出∠BAD,此時(shí)就可以求出∠DAE.最后利用三角形的外角和內(nèi)角的關(guān)系可以求出∠AEC.
點(diǎn)評:此題主要考查了三角形的內(nèi)角,外角以及和它們相關(guān)的一些結(jié)論,圖形比較復(fù)雜,對于學(xué)生的視圖能力要求比較高.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案