27、根據下列證明過程填空:
如圖,BD⊥AC,EF⊥AC,D、F分別為垂足,且∠1=∠FEC,求證:∠ADG=∠C
證明:∵BD⊥AC,EF⊥AC(已知)
∴∠2=∠3=90°
∴BD∥EF(同位角相等,兩直線平行)
∴∠FEC=
∠5
(兩直線平行,同位角相等)
∵∠1=∠FEC(已知)
∴∠1=
∠5
(等量代換)
∴DG∥BC(
內錯角相等,兩直線平行

∴∠ADG=∠C(
兩直線平行,同位角相等
分析:熟悉平行線的性質和判定,能正確運用語言敘述理由.
解答:證明:∵BD⊥AC,EF⊥AC(已知),
∴∠2=∠3=90°,
∴BD∥EF(同位角相等,兩直線平行),
∴∠FEC=∠5(兩直線平行,同位角相等);
∵∠1=∠FEC(已知),
∴∠1=∠5(等量代換),
∴DG∥BC(內錯角相等,兩直線平行),
∴∠ADG=∠C(兩直線平行,同位角相等).
點評:注意平行線的性質和判定的綜合運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2012-2013學年廣東省茂名市愉園中學七年級下學期期中考試數(shù)學試卷(帶解析) 題型:解答題

根據下列證明過程填空:
(1)如圖,已知直線EF與AB、CD都相交,且AB∥CD,試說明∠1=∠2的理由.

解:∵AB∥CD (已知)
∴∠2=∠3(                                )
∵∠1=∠3(                  )
∴∠1=∠2( 等量代換 )                  
(2)如圖,已知:△AOC≌△BOD,試說明AC∥BD成立的理由.

解:∵△AOC≌△BOD
∴∠A=          (                             )
∴AC∥BD (                                )

查看答案和解析>>

科目:初中數(shù)學 來源:2015屆廣東省茂名市七年級下學期期中考試數(shù)學試卷(解析版) 題型:解答題

根據下列證明過程填空:

(1)如圖,已知直線EF與AB、CD都相交,且AB∥CD,試說明∠1=∠2的理由.

解:∵AB∥CD (已知)

∴∠2=∠3(                                )

∵∠1=∠3(                  )

∴∠1=∠2( 等量代換 )                  

(2)如圖,已知:△AOC≌△BOD,試說明AC∥BD成立的理由.

解:∵△AOC≌△BOD

∴∠A=          (                             )

∴AC∥BD (                                )

 

查看答案和解析>>

科目:初中數(shù)學 來源:江蘇省期末題 題型:解答題

根據下列證明過程填空:
如圖,BD⊥AC,EF⊥AC,D、F分別為垂足,且∠1=∠FEC,求證:∠ADG=∠C
證明:∵BD⊥AC,EF⊥AC(已知)
∴∠2=∠3=90°
∴BD∥EF(同位角相等,兩直線平行)
∴∠FEC= _________ (兩直線平行,同位角相等)
∵∠1=∠FEC(已知)
∴∠1= _________ (等量代換)
∴DG∥BC( ________  
∴∠ADG=∠C( _________  

查看答案和解析>>

科目:初中數(shù)學 來源:同步題 題型:解答題

根據下列證明過程填空:
如圖,BD⊥AC,EF⊥AC,D、F分別為垂足,且∠1=∠FEC,求證:∠ADG=∠C
證明:∵BD⊥AC,EF⊥AC(已知)
∴∠EFA=∠BDA=90°
∴BD∥EF(同位角相等,兩直線平行)
∴∠FEC=        (兩直線平行,同位角相等)
∵∠1=∠FEC(已知)
∴∠1=       (等量代換)
DG∥BC(                                                   
∴∠ADG=∠C(                                         

查看答案和解析>>

同步練習冊答案