如圖,已知對稱軸為x=-數(shù)學(xué)公式的拋物線y=ax2+bx+6與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),OA=3,D是拋物線上一點(diǎn),且DC⊥OC.
(1)求點(diǎn)D的坐標(biāo)及拋物線y=ax2+bx+c的表達(dá)式;
(2)連接OD,直線y=數(shù)學(xué)公式x+m與OD交于點(diǎn)E,與y軸交于點(diǎn)F,若OE:DE=1:2,求m的值;
(3)若M是直線EF上一動點(diǎn),在x軸上方是否存在點(diǎn)N,使以O(shè)、F、M、N為頂點(diǎn)的四邊形是菱形?若存在求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.

解:(1)∵拋物線的對稱軸為x=-,經(jīng)過點(diǎn)A(3,0),
,解得
∴拋物線解析式為y=-x2-x+6;

(2)∵y=-x2-x+6,
∴x=0時(shí),y=6,即C點(diǎn)坐標(biāo)為(0,6),
∴當(dāng)y=6時(shí),-x2-x+6=6,
解得x=0或-3,
∴D點(diǎn)坐標(biāo)為(-3,6),DC=3.
如圖,過點(diǎn)E作EG⊥y軸于點(diǎn)G,則EG∥DC,
∴△OEG∽△ODC,
===,
∴EG=DC=1,OG=OC=2,
∴E點(diǎn)坐標(biāo)為(-1,2).
將E點(diǎn)坐標(biāo)代入y=x+m,
得2=-+m,
解得m=;

(3)若M是直線EF上一動點(diǎn),在x軸上方存在點(diǎn)N,使以O(shè)、F、M、N為頂點(diǎn)的四邊形是菱形.
分兩種情況:
①如圖,OF為菱形的邊時(shí),如果OF=FM1=M1N1=N1O=
延長M1N1交x軸于點(diǎn)G1,則M1N1⊥x軸.
∵點(diǎn)M1在直線y=x+上,
∴設(shè)點(diǎn)M1的坐標(biāo)為(a,a+)(a>0),則點(diǎn)N1的坐標(biāo)為(a,a),
在Rt△OG1N1中,OG12+G1N12=ON12
即:a2+(a)2=(2,
整理得:a2=5,
∵a>0,
∴a=,
∴點(diǎn)N1的坐標(biāo)為();
同理,求得點(diǎn)M2的坐標(biāo)為(-2,)(a>0),則點(diǎn)N2的坐標(biāo)為(-2,4);
②如圖,OF為菱形的對角線時(shí),連接M3N3,交OF于點(diǎn)P,則M3N3與OF互相垂直平分,
∴OP=OF=
∴當(dāng)y=時(shí),x+=
解得:x=-
∴點(diǎn)M3的坐標(biāo)為(-,),
∴點(diǎn)N3的坐標(biāo)為(,).
綜上所述,x軸上方的點(diǎn)N有3個(gè),分別為N1,),N2(-2,4),N3,).
分析:(1)根據(jù)拋物線對稱軸得到關(guān)于a、b的一個(gè)方程,再把點(diǎn)A點(diǎn)坐標(biāo)代入拋物線解析式,然后解方程組求出a、b的值,即可得解;
(2)先求出拋物線y=-x2-x+6與y軸交點(diǎn)C的坐標(biāo)為(0,6),將y=6代入,求出x的值,得到D點(diǎn)坐標(biāo)及DC=3,再過點(diǎn)E作EG⊥y軸于點(diǎn)G,由EG∥DC,得到△OEG∽△ODC,根據(jù)相似三角形對應(yīng)邊成比例得出===,求出EG,OG的值,得出E點(diǎn)坐標(biāo),然后將E點(diǎn)坐標(biāo)代入y=x+m,即可求出m的值;
(3)分兩種情況進(jìn)行討論:①OF為菱形的邊時(shí),延長M1N1交x軸于點(diǎn)G1,則M1N1⊥x軸.設(shè)點(diǎn)M1的坐標(biāo)為(a,a+),則點(diǎn)N1的坐標(biāo)為(a,a),在Rt△OG1N1中,運(yùn)用勾股定理得出OG12+G1N12=ON12,列出關(guān)于a的方程,解方程即可,同理求出點(diǎn)N2的坐標(biāo);②OF為菱形的對角線時(shí),連接M3N3,交OF于點(diǎn)P,根據(jù)菱形的性質(zhì)可知M3N3與OF互相垂直平分,則OP=OF=,將y=代入y=x+,求出x的值,進(jìn)而得到點(diǎn)N3的坐標(biāo).
點(diǎn)評:此題考查了待定系數(shù)法求函數(shù)的解析式、相似三角形的判定與性質(zhì)、菱形的性質(zhì)以及勾股定理.此題難度較大,注意掌握方程思想、分類討論思想與數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知對稱軸為直線x=4的拋物線交x軸于點(diǎn)A、B(點(diǎn)A在B左側(cè)),且點(diǎn)B坐標(biāo)為(6,0),過點(diǎn)B的直線交拋物線于點(diǎn)C(3,4).
(1)寫出點(diǎn)A坐標(biāo);
(2)求拋物線解析式;
(3)若點(diǎn)P在拋物線的BC段上,則x軸上時(shí)否存在點(diǎn)Q,使得以Q、B、P、C為頂點(diǎn)的四邊形是平行四邊形?若存在,請分別求出點(diǎn)P、Q坐標(biāo);若不存在,請說明理由;
(4)若點(diǎn)M在線段AB上以每秒1個(gè)單位長度的速度從A向B運(yùn)動,同時(shí),點(diǎn)N在射線BC上以每秒2個(gè)單位長度的速度從B向C運(yùn)動,當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動.設(shè)運(yùn)動時(shí)間為t秒,當(dāng)t為何值,以M、N、B為頂點(diǎn)的三角形與△ABC相似,寫出計(jì)算過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知對稱軸為x=-
3
2
的拋物線y=ax2+bx+6與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),OA=3,D是拋物線上一點(diǎn),且DC⊥OC.
(1)求點(diǎn)D的坐標(biāo)及拋物線y=ax2+bx+c的表達(dá)式;
(2)連接OD,直線y=
1
2
x+m與OD交于點(diǎn)E,與y軸交于點(diǎn)F,若OE:DE=1:2,求m的值;
(3)若M是直線EF上一動點(diǎn),在x軸上方是否存在點(diǎn)N,使以O(shè)、F、M、N為頂點(diǎn)的四邊形是菱形?若存在求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年湖北省黃岡市浠水縣華桂中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

如圖,已知對稱軸為直線x=4的拋物線交x軸于點(diǎn)A、B(點(diǎn)A在B左側(cè)),且點(diǎn)B坐標(biāo)為(6,0),過點(diǎn)B的直線交拋物線于點(diǎn)C(3,4).
(1)寫出點(diǎn)A坐標(biāo);
(2)求拋物線解析式;
(3)若點(diǎn)P在拋物線的BC段上,則x軸上時(shí)否存在點(diǎn)Q,使得以Q、B、P、C為頂點(diǎn)的四邊形是平行四邊形?若存在,請分別求出點(diǎn)P、Q坐標(biāo);若不存在,請說明理由;
(4)若點(diǎn)M在線段AB上以每秒1個(gè)單位長度的速度從A向B運(yùn)動,同時(shí),點(diǎn)N在射線BC上以每秒2個(gè)單位長度的速度從B向C運(yùn)動,當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動.設(shè)運(yùn)動時(shí)間為t秒,當(dāng)t為何值,以M、N、B為頂點(diǎn)的三角形與△ABC相似,寫出計(jì)算過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年湖北省黃岡中學(xué)啟黃初中中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

如圖,已知對稱軸為直線x=4的拋物線交x軸于點(diǎn)A、B(點(diǎn)A在B左側(cè)),且點(diǎn)B坐標(biāo)為(6,0),過點(diǎn)B的直線交拋物線于點(diǎn)C(3,4).
(1)寫出點(diǎn)A坐標(biāo);
(2)求拋物線解析式;
(3)若點(diǎn)P在拋物線的BC段上,則x軸上時(shí)否存在點(diǎn)Q,使得以Q、B、P、C為頂點(diǎn)的四邊形是平行四邊形?若存在,請分別求出點(diǎn)P、Q坐標(biāo);若不存在,請說明理由;
(4)若點(diǎn)M在線段AB上以每秒1個(gè)單位長度的速度從A向B運(yùn)動,同時(shí),點(diǎn)N在射線BC上以每秒2個(gè)單位長度的速度從B向C運(yùn)動,當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動.設(shè)運(yùn)動時(shí)間為t秒,當(dāng)t為何值,以M、N、B為頂點(diǎn)的三角形與△ABC相似,寫出計(jì)算過程.

查看答案和解析>>

同步練習(xí)冊答案