【題目】如圖,在正方形ABCD中,E、F分別是BC、CD上的點(diǎn),且∠EAF=45°,AE、AF分別交BD于M、N,連按EN、EF、有以下結(jié)論:①AN=EN,②當(dāng)AE=AF時(shí),=2﹣,③BE+DF=EF,④存在點(diǎn)E、F,使得NF>DF,其中正確的個(gè)數(shù)是( 。
A. 1B. 2C. 3D. 4
【答案】B
【解析】
①如圖1,證明△AMN∽△BME和△AMB∽△NME,可得∠NAE=∠AEN=45°,則△AEN是等腰直角三角形可作判斷;
②先證明CE=CF,假設(shè)正方形邊長(zhǎng)為1,設(shè)CE=x,則BE=1-x,表示AC的長(zhǎng)為AO+OC可作判斷;
③如圖3,將△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABH,證明△AEF≌△AEH(SAS),則EF=EH=BE+BH=BE+DF,可作判斷;
④在△ADN中根據(jù)比較對(duì)角的大小來(lái)比較邊的大。
①如圖1,
∵四邊形ABCD是正方形,
∴∠EBM=∠ADM=∠FDN=∠ABD=45°,
∵∠MAN=∠EBM=45°,∠AMN=∠BME,
∴△AMN∽△BME,
∴,
∵∠AMB=∠EMN,
∴△AMB∽△NME,
∴∠AEN=∠ABD=45°
∴∠NAE=∠AEN=45°,
∴△AEN是等腰直角三角形,
∴AN=EN,
故①正確;
②在△ABE和△ADF中,
∵,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF,
∵BC=CD,
∴CE=CF,
假設(shè)正方形邊長(zhǎng)為1,設(shè)CE=x,則BE=1﹣x,
如圖2,連接AC,交EF于H,
∵AE=AF,CE=CF,
∴AC是EF的垂直平分線,
∴AC⊥EF,OE=OF,
Rt△CEF中,OC=EF=x,
△EAF中,∠EAO=∠FAO=22.5°=∠BAE=22.5°,
∴OE=BE,
∵AE=AE,
∴Rt△ABE≌Rt△AOE(HL),
∴AO=AB=1,
∴AC==AO+OC,
∴1+x=,
x=2﹣,
∴===;
故②不正確;
③如圖3,
∴將△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABH,則AF=AH,∠DAF=∠BAH,
∵∠EAF=45°=∠DAF+∠BAE=∠HAE,
∵∠ABE=∠ABH=90°,
∴H、B、E三點(diǎn)共線,
在△AEF和△AEH中,
,
∴△AEF≌△AEH(SAS),
∴EF=EH=BE+BH=BE+DF,
故③正確;
④△ADN中,∠FND=∠ADN+∠NAD>45°,
∠FDN=45°,
∴DF>FN,
故存在點(diǎn)E、F,使得NF>DF,
故④不正確;
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠BAC=90°,E是BC的中點(diǎn),AD∥BC,AE∥DC,EF⊥CD于點(diǎn)F.
(1)求證:四邊形AECD是菱形;
(2)若AB=6,BC=10,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】第五代移動(dòng)電話通信行動(dòng)標(biāo)準(zhǔn),也稱第五代移動(dòng)通信技術(shù),外語(yǔ)縮寫:5G.也是4G之后的延伸,正在研究中,5G網(wǎng)絡(luò)的理論下行速度為10Gb/s(相當(dāng)于下載速度1.25GB/s).2019年1月24日,華為發(fā)布了迄今最強(qiáng)大的5G基帶芯片Balong500,同時(shí),還發(fā)布了全球最快CPE,支持智能家居連接.中國(guó)5G技術(shù)的研發(fā)帶來(lái)了社會(huì)生產(chǎn)力和社會(huì)關(guān)系的重大改變,它是國(guó)人的驕傲….小明組織了幾位同學(xué)就5G手機(jī)面世后自己居住的小區(qū)使用手機(jī)的居民是否立即改用5G手機(jī)問題,隨機(jī)對(duì)本小區(qū)的部分使用手機(jī)的居民進(jìn)行了問卷調(diào)查(分五類:A表示非常期待體驗(yàn),將立即使用;B表示擔(dān)心費(fèi)用太高消費(fèi)不起,但還是要體驗(yàn),將立即使用;C表示怕技術(shù)不成熟,造成經(jīng)濟(jì)損失,但還是要體驗(yàn),將立即使用;D表示先等待一段時(shí)間后再說(shuō),暫時(shí)不體驗(yàn),不立即使用;E表示其它原因不體驗(yàn),不立即使用).根據(jù)調(diào)查結(jié)果分別繪制了如下兩個(gè)統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息解答下列問題:
(1)隨機(jī)被調(diào)查的居民總?cè)藬?shù)為 人,m= ,扇形統(tǒng)計(jì)圖中A類所對(duì)應(yīng)扇形的園心角為 度;
(2)請(qǐng)根據(jù)統(tǒng)計(jì)數(shù)據(jù)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若小區(qū)有使用手機(jī)的居民共約8000人,請(qǐng)估計(jì)約有多少居民在5G手機(jī)面世后不立即使用5G手機(jī)?若通訊公司在5G手機(jī)面世后第一個(gè)月在本小區(qū)的業(yè)務(wù)目標(biāo)是最多2000手機(jī)用戶不使用5G手機(jī),請(qǐng)根據(jù)計(jì)算結(jié)果幫助公司擬定一條宣傳建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】縉云山是國(guó)家級(jí)自然風(fēng)景名勝區(qū),上周周末,小明和媽媽到縉云山游玩,登上了香爐峰觀景塔,從觀景塔底中心處水平向前走米到點(diǎn)處,再沿著坡度為的斜坡走一段距離到達(dá)點(diǎn),此時(shí)回望觀景塔,更顯氣勢(shì)宏偉,在點(diǎn)觀察到觀景塔頂端的仰角為再往前沿水平方向走米到處,觀察到觀景塔頂端的仰角是,則觀景塔的高度為( )(tan22°≈0.4)
A.米B.米C.米D.米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:在平面直角坐標(biāo)系中,任意兩點(diǎn)A(x1,y1),B(x2,y2)之間的位置關(guān)系有以下三種情形;
①如果AB∥x軸,則y1=y2,AB=|x1﹣x2|
②如果AB∥y軸,則x1=x2,AB=|y1﹣y2|
③如果AB與x軸、y軸均不平行,如圖,過點(diǎn)A作與x軸的平行線與過點(diǎn)B作與y軸的平行線相交于點(diǎn)C,則點(diǎn)C坐標(biāo)為(x2,y1),由①得AC=|x1﹣x2|;由②得BC=|y1﹣y2|;根據(jù)勾股定理可得平面直角坐標(biāo)系中任意兩點(diǎn)的距離公式AB=.
小試牛刀:
(1)若點(diǎn)A坐標(biāo)為(﹣2,3),B點(diǎn)坐標(biāo)為(3,3)則AB= ;
(2)若點(diǎn)A坐標(biāo)為(3,2),B點(diǎn)坐標(biāo)為(3,﹣4)則AB= ;
(3)若點(diǎn)A坐標(biāo)為(3,2),B點(diǎn)坐標(biāo)為(7,﹣1)則AB= ;
學(xué)以致用:
若點(diǎn)A坐標(biāo)為(2,2),點(diǎn)B坐標(biāo)為(4,4),點(diǎn)P是x軸上的動(dòng)點(diǎn),當(dāng)AP+PB取得最小值時(shí)點(diǎn)P的坐標(biāo)為 并求出AP+PB最小值= ;
挑戰(zhàn)自我:
已知M=,N=根據(jù)數(shù)形結(jié)合,直接寫出M的最小值= ;N的最大值= ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某蔬菜種植基地為提高蔬菜產(chǎn)量,計(jì)劃對(duì)甲、乙兩種型號(hào)蔬菜大棚進(jìn)行改造,根據(jù)預(yù)算,改造2個(gè)甲種型號(hào)大棚比1個(gè)乙種型號(hào)大棚多需資金6萬(wàn)元,改造1個(gè)甲種型號(hào)大棚和2個(gè)乙種型號(hào)大棚共需資金48萬(wàn)元.
(1)改造1個(gè)甲種型號(hào)和1個(gè)乙種型號(hào)大棚所需資金分別是多少萬(wàn)元?
(2)已知改造1個(gè)甲種型號(hào)大棚的時(shí)間是5天,改造1個(gè)乙種型號(hào)大概的時(shí)間是3天,該基地計(jì)劃改造甲、乙兩種蔬菜大棚共8個(gè),改造資金最多能投入128萬(wàn)元,要求改造時(shí)間不超過35天,請(qǐng)問有幾種改造方案?哪種方案基地投入資金最少,最少是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,AC=CE,連接AE交BC于點(diǎn)D,延長(zhǎng)DC至F點(diǎn),使CF=CD,連接AF.
(1)判斷直線AF與⊙O的位置關(guān)系,并說(shuō)明理由.
(2)若AC=10,tan∠CAE=,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E是對(duì)角線BD上一點(diǎn),DE=4BE,連接CE,過點(diǎn)E作EF⊥CE交AB的延長(zhǎng)線于點(diǎn)F,若AF=8,則正方形ABCD的邊長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x﹣1的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與反比例函數(shù)圖象的一個(gè)交點(diǎn)為M(﹣2,m).
(1)求反比例函數(shù)的解析式;
(2)當(dāng)y2>y1時(shí),求x的取值范圍;
(3)求點(diǎn)B到直線OM的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com