(2007•資陽)如圖,在△ABC中,已知∠C=90°,AC=60cm,AB=100cm,a,b,c…是在△ABC內(nèi)部的矩形,它們的一個頂點在AB上,一組對邊分別在AC上或與AC平行,另一組對邊分別在BC上或與BC平行.若各矩形在AC上的邊長相等,矩形a的一邊長是72cm,則這樣的矩形a、b、c…的個數(shù)是( )

A.6
B.7
C.8
D.9
【答案】分析:根據(jù)勾股定理可以求出每階臺階的寬,依據(jù)BC的長,即可解答.
解答:解:如圖,易證△BDE≌△EFG≌△GKH≌△HLM,
可得BD=EF=GK=HL=BC-DC=-72=8cm.
根據(jù)此規(guī)律,共有80÷8-1=9個這樣的矩形.
故選D.
點評:本題將勾股定理和規(guī)律的探索與實際問題相結(jié)合,有一定的難度,善于觀察題目的信息是解題以及學(xué)好數(shù)學(xué)的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2007•資陽)如圖,已知點A(-4,2)、B( n,-4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=
mx
圖象的兩個交點:
(1)求點B的坐標和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣東省珠海市中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2007•資陽)如圖,已知拋物線P:y=ax2+bx+c(a≠0)與x軸交于A、B兩點(點A在x軸的正半軸上),與y軸交于點C,矩形DEFG的一條邊DE在線段AB上,頂點F、G分別在線段BC、AC上,拋物線P上部分點的橫坐標對應(yīng)的縱坐標如下:
x-3-212
y-4
(1)求A、B、C三點的坐標;
(2)若點D的坐標為(m,0),矩形DEFG的面積為S,求S與m的函數(shù)關(guān)系,并指出m的取值范圍;
(3)當矩形DEFG的面積S取最大值時,連接DF并延長至點M,使FM=k•DF,若點M不在拋物線P上,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年湖北省襄樊市?悼h城關(guān)鎮(zhèn)中中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2007•資陽)如圖,已知拋物線P:y=ax2+bx+c(a≠0)與x軸交于A、B兩點(點A在x軸的正半軸上),與y軸交于點C,矩形DEFG的一條邊DE在線段AB上,頂點F、G分別在線段BC、AC上,拋物線P上部分點的橫坐標對應(yīng)的縱坐標如下:
x-3-212
y-4
(1)求A、B、C三點的坐標;
(2)若點D的坐標為(m,0),矩形DEFG的面積為S,求S與m的函數(shù)關(guān)系,并指出m的取值范圍;
(3)當矩形DEFG的面積S取最大值時,連接DF并延長至點M,使FM=k•DF,若點M不在拋物線P上,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年河北省石家莊市第42中學(xué)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2007•資陽)如圖,已知點A(-4,2)、B( n,-4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)圖象的兩個交點:
(1)求點B的坐標和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年四川省資陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•資陽)如圖,已知點A(-4,2)、B( n,-4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)圖象的兩個交點:
(1)求點B的坐標和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案