如圖一,有一個(gè)圓O和兩個(gè)正六邊形T1,T2.T1的六個(gè)頂點(diǎn)都在圓周上,T2的六條邊都和圓O相切(我們稱T1,T2分別為圓O的內(nèi)接正六邊形和外切正六邊形).
精英家教網(wǎng)
(1)請(qǐng)你在備用圖中畫出圓O的內(nèi)接正六邊形,并簡(jiǎn)要寫出作法;
(2)設(shè)圓O的半徑為R,求T1,T2的邊長(zhǎng)(用含R的式子表示);
(3)設(shè)圓O的半徑為R,求圖二中陰影部分的面積(用含R的式子表示)
分析:(1)先畫出60°的圓心角,確定圓心角所對(duì)的弧,在圓上依次截取與弧AB相等的弧即可;
(2)連接OG,得到Rt△OGB≌Rt△OGA,然后利用勾股定理解答;
(3)根據(jù)“陰影部分的面積=外切正六邊形的面積-內(nèi)接正六邊形的面積”,并把正六邊形的面積轉(zhuǎn)化為
六個(gè)三角形面積的和解答.
解答:解:(1)如圖
精英家教網(wǎng)
作法:①在⊙O中做圓心角∠AOB=60°;
②在⊙O上依次截取與弧AB相等的弧,得到圓的6個(gè)等分點(diǎn)A、B、C、D、E、F;
③順次連接各點(diǎn),六邊形ABCDEF即為所求正六邊形.(4分)

(2)如圖:
精英家教網(wǎng)
∵由(1)知△AOB為等邊三角形,
∴T1的半徑為R.(6分)
連接OG,可知Rt△OGB≌Rt△OGA,
∴∠OGB=60°,
∴BG=
1
2
OG
,
設(shè)BG為x,由勾股定理有:x2+R2=(2x)2,
解得:x=
3
3
R
,
外切正六邊形的邊長(zhǎng)為
2
3
3
R
.(8分)

(3)由圖知:
陰影部分的面積=外切正六邊形的面積-內(nèi)接正六邊形的面積,
∵內(nèi)接正六邊形的面積為S△AOB的六倍,S△AOB=
3
4
R2

∴內(nèi)接正六邊形的面積為:S內(nèi)=6S△AOB=
3
3
2
R2
.(9分)
∵外切正六邊形的面積為S△OGH的六倍,S△OGH=
3
4
•(
2
3
3
R)2=
3
3
R2

∴外切正六邊形的面積為:S=6S△OGH=2
3
R2
.(10分)
S=S-S內(nèi)=(2
3
-
3
3
2
)R2=
3
2
R2
.(12分)
點(diǎn)評(píng):此題考查了圓和其內(nèi)接正六邊形、外切正六邊形之間的關(guān)系,要轉(zhuǎn)化為正三角來解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖一,有一個(gè)圓O和兩個(gè)正六邊形T1,T2.T1的六個(gè)頂點(diǎn)都在圓周上,T2的六條邊都和圓O相切(我們稱T1,T2分別為圓O的內(nèi)接正六邊形和外切正六邊形).

(1)請(qǐng)你在備用圖中畫出圓O的內(nèi)接正六邊形,并簡(jiǎn)要寫出作法;
(2)設(shè)圓O的半徑為R,求T1,T2的邊長(zhǎng)(用含R的式子表示);
(3)設(shè)圓O的半徑為R,求圖二中陰影部分的面積(用含R的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖一,有一個(gè)圓O和兩個(gè)正六邊形T1,T2.T1的六個(gè)頂點(diǎn)都在圓周上,T2的六條邊都和圓O相切(我們稱T1,T2分別為圓O的內(nèi)接正六邊形和外切正六邊形).

(1)請(qǐng)你在備用圖中畫出圓O的內(nèi)接正六邊形,并簡(jiǎn)要寫出作法;

(2)設(shè)圓O的半徑為R,求T1,T2的邊長(zhǎng)(用含R的式子表示);

(3)設(shè)圓O的半徑為R,求圖二中陰影部分的面積(用含R的式子表示).

          

圖一                   備用圖                 圖二

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江西省師大附中九年級(jí)(上)月考數(shù)學(xué)試卷(10月份)(解析版) 題型:解答題

如圖一,有一個(gè)圓O和兩個(gè)正六邊形T1,T2.T1的六個(gè)頂點(diǎn)都在圓周上,T2的六條邊都和圓O相切(我們稱T1,T2分別為圓O的內(nèi)接正六邊形和外切正六邊形).

(1)請(qǐng)你在備用圖中畫出圓O的內(nèi)接正六邊形,并簡(jiǎn)要寫出作法;
(2)設(shè)圓O的半徑為R,求T1,T2的邊長(zhǎng)(用含R的式子表示);
(3)設(shè)圓O的半徑為R,求圖二中陰影部分的面積(用含R的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年江西省師大附中九年級(jí)(上)月考數(shù)學(xué)試卷(10月份)(解析版) 題型:解答題

如圖一,有一個(gè)圓O和兩個(gè)正六邊形T1,T2.T1的六個(gè)頂點(diǎn)都在圓周上,T2的六條邊都和圓O相切(我們稱T1,T2分別為圓O的內(nèi)接正六邊形和外切正六邊形).

(1)請(qǐng)你在備用圖中畫出圓O的內(nèi)接正六邊形,并簡(jiǎn)要寫出作法;
(2)設(shè)圓O的半徑為R,求T1,T2的邊長(zhǎng)(用含R的式子表示);
(3)設(shè)圓O的半徑為R,求圖二中陰影部分的面積(用含R的式子表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案