【題目】如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA=5,PB=12,PC=13,若將△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后,得到△P′AB,求點(diǎn)P與點(diǎn)P′之間的距離及∠APB的度數(shù).
【答案】解:∵△ABC為等邊三角形,
∴AB=AC,∠BAC=60°,
∵△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后,得到△P′AB,
∴∠P′AP=∠BAC=60°,AP′=AP,BP′=CP=13,
∴△AP′P為等邊三角形,
∴PP′=AP=5,∠APP′=60°,
在△BPP′中,∵PP′=5,BP=12,BP′=13,
∴PP′2+BP2=BP′2 ,
∴△BPP′為直角三角形,∠BPP′=90°,
∴∠APB=∠APP′+∠BPP′=60°+90°=150°.
答:點(diǎn)P與點(diǎn)P′之間的距離為5,∠APB的度數(shù)為150°.
【解析】先根據(jù)等邊三角形的性質(zhì)得AB=AC,∠BAC=60°,再利用旋轉(zhuǎn)的性質(zhì)得∠P′AP=∠BAC=60°,AP′=AP,BP′=CP=13,于是可判斷△AP′P為等邊三角形,得到PP′=AP=5,∠APP′=60°,接著根據(jù)勾股定理的逆定理證明△BPP′為直角三角形,且∠BPP′=90°,然后利用∠APB=∠APP′+∠BPP′求出∠APB的度數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CA=CB,CD=CE,∠ACB=∠DCE=40°,AD、BE交于點(diǎn)H,連接CH,則∠CHE=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD邊長(zhǎng)為2,E為CD的中點(diǎn),以點(diǎn)A為中心,把△ADE順時(shí)針旋轉(zhuǎn)90°得△ABF,連接EF,則EF的長(zhǎng)等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣6,0)、B(﹣2,3)、
C(﹣1,0).
(1)請(qǐng)直接寫出與點(diǎn)B關(guān)于坐標(biāo)原點(diǎn)O的對(duì)稱點(diǎn)B1的坐標(biāo);
(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°.畫出對(duì)應(yīng)的△A′B′C′圖形,直接寫出點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo);
(3)若四邊形A′B′C′D′為平行四邊形,請(qǐng)直接寫出第四個(gè)頂點(diǎn)D′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點(diǎn).
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸與C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得△QAC的周長(zhǎng)最。咳舸嬖,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點(diǎn)P,使△PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值;若沒有,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=(x﹣1)2+n與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C(0,﹣3),點(diǎn)D與點(diǎn)C關(guān)于拋物線的對(duì)稱軸對(duì)稱.
(1)求拋物線的解析式及點(diǎn)D的坐標(biāo);
(2)點(diǎn)P是拋物線對(duì)稱軸上的一動(dòng)點(diǎn),當(dāng)△PAC的周長(zhǎng)最小時(shí),求出點(diǎn)P的坐標(biāo);
(3)點(diǎn)Q在x軸上,且∠ADQ=∠DAC,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x1、x2是一元二次方程2x2﹣2x+1﹣3m=0的兩個(gè)實(shí)數(shù)根,且x1、x2滿足不等式x1x2+2(x1+x2)>0,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形的頂點(diǎn)的坐標(biāo)為,點(diǎn)在軸正半軸上,點(diǎn)在第三象限的雙曲線上,過點(diǎn)作軸交雙曲線于點(diǎn),連接,則的面積為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com