已知:如圖,在?ABCD中,對角線AC、BD相交于點O,EF過點O分別交AD、BC于點E、F.
求證:OE=OF.

【答案】分析:首先根據(jù)平行四邊形的性質可得AD∥BC,OA=OC.根據(jù)平行線的性質可得∠EAO=∠FCO,∠AEO=∠CFO,進而可根據(jù)AAS定理證明△AEO≌△CFO,再根據(jù)全等三角形的性質可得OE=OF.
解答:證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,OA=OC.
∴∠EAO=∠FCO,∠AEO=∠CFO,
在△AOE和△COF中
∴△AEO≌△CFO(AAS),
∴OE=OF.
點評:此題主要考查了平行四邊形的性質,以及全等三角形的性質和判定,關鍵是掌握平行四邊形的對角線互相平分.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

34、已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點O為圓心,過A,D兩點作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關系,并說明理由;
(2)若(1)中的⊙O與AB邊的另一個交點為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結果保留根號和π)《根據(jù)2011江蘇揚州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點D和點E.
(1)作出邊AC的垂直平分線DE;
(2)當AE=BC時,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在AB、AC上各取一點E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學 來源:專項題 題型:證明題

已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連結BD,CE,BD與CE交于O,連結AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習冊答案