如圖,已知直線y=
3
x+4
3
與x軸,y軸分別交于A、B兩點(diǎn),直線BC與x軸交于點(diǎn)C,且AB=BC.
(1)求出點(diǎn)A、B、C的坐標(biāo).
(2)求△ABC的面積.
(3)試確定直線BC的解析式.
分析:(1)令y=0求出x的值,從而得到點(diǎn)A的坐標(biāo),令x=0求出y的值,從而得到點(diǎn)B的坐標(biāo),再根據(jù)AB=BC可知,點(diǎn)A、C關(guān)于y軸對稱,根據(jù)關(guān)于y軸對稱的點(diǎn)的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相同寫出點(diǎn)C的坐標(biāo)即可;
(2)根據(jù)點(diǎn)A、B、C的坐標(biāo)求出AC、OB的長度,再根據(jù)三角形的面積公式列式進(jìn)行計(jì)算即可得解;
(3)利用待定系數(shù)法求一次函數(shù)解析式解答.
解答:解:(1)令y=0,則
3
x+4
3
=0,
解得x=-4,
令x=0,則y=4
3
,
所以,點(diǎn)A(-4,0),B(0,4
3
),
∵AB=BC,BO⊥AC,
∴點(diǎn)A、C關(guān)于y軸對稱,
∴點(diǎn)C(4,0);

(2)∵A(-4,0),B(0,4
3
),C(4,0),
∴AC=4-(-4)=8,OB=4
3
,
∴△ABC的面積=
1
2
AC•OB=
1
2
×8×4
3
=16
3
;

(3)設(shè)直線BC的解析式為y=kx+b,
4k+b=0
b=4
3

解得
k=-
3
b=4
3
,
所以,直線BC的解析式為y=-
3
x+4
3
點(diǎn)評:本題考查了待定系數(shù)法求一次函數(shù)解析式,求直線與坐標(biāo)軸的交點(diǎn),三角形的面積,是基礎(chǔ)題,應(yīng)熟練掌握并靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,已知直線AB和CD相交于點(diǎn)O,∠COE是直角,OF平分∠AOE.
(1)寫出∠AOC與∠BOD的大小關(guān)系:
相等
,判斷的依據(jù)是
等角的補(bǔ)角相等
;
(2)若∠COF=35°,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖,已知直線l1∥l2,AB⊥CD,∠1=30°,則∠2的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直線l1y=
2
3
x+
8
3
與直線 l2:y=-2x+16相交于點(diǎn)C,直線l1、l2分別交x軸于A、B兩點(diǎn),矩形DEFG的頂點(diǎn)D、E分別在l1、l2上,頂點(diǎn)F、G都在x軸上,且點(diǎn)G與B點(diǎn)重合,那么S矩形DEFG:S△ABC=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•懷化)如圖,已知直線a∥b,∠1=35°,則∠2=
35°
35°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線m∥n,則下列結(jié)論成立的是( 。

查看答案和解析>>

同步練習(xí)冊答案