將二次函數(shù)化為的形式,結(jié)果為(      )
A.B.
C.D.
D.

試題分析:y=x2﹣4x﹣1=x2﹣4x+4﹣5=(x﹣2)2﹣5.
故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

.如圖,在10×10的網(wǎng)格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點(diǎn)稱為格點(diǎn).若拋物線經(jīng)過圖中的三個格點(diǎn),則以這三個格點(diǎn)為頂點(diǎn)的三角形稱為拋物線的“內(nèi)接格點(diǎn)三角形”.以O(shè)為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,若拋物線與網(wǎng)格對角線OB的兩個交點(diǎn)之間的距離為,且這兩個交點(diǎn)與拋物線的頂點(diǎn)是拋物線的內(nèi)接格點(diǎn)三角形的三個頂點(diǎn),則滿足上述條件且對稱軸平行于y軸的拋物線條數(shù)是
A.13B.14C.15D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

平面直角坐標(biāo)系xOy中,拋物線y=ax2-4ax+4a+c與x軸交于點(diǎn)A、B,與y軸的正半軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(1,0),OB=OC.

(1)求此拋物線的解析式;
(2)若點(diǎn)P是線段BC上的一個動點(diǎn),過點(diǎn)P作y軸的平行線與拋物線在x軸下方交于點(diǎn)Q,試問線段PQ的長度是否存在最大值?若存在,求出其最大值;若不存在,請說明理由;
(3)若此拋物線的對稱軸上的點(diǎn)M滿足∠AMC=45°,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某批發(fā)商以每件50元的價(jià)格購進(jìn)400件T恤.若以單價(jià)70元銷售,預(yù)計(jì)可售出200件.批發(fā)商的銷售策略是:第一個月為增加銷售量,降價(jià)銷售,經(jīng)過市場調(diào)查,單價(jià)每降低0.5元,可多售出5件,但最低單價(jià)不低于購進(jìn)的價(jià)格;第一個月結(jié)束后,將剩余的T恤一次性清倉銷售,清倉時單價(jià)為40元.設(shè)第一個月單價(jià)降低x元.
(1)根據(jù)題意,完成下表:
 
每件T恤的利潤(元)
銷售量(件)
第一個月
 
 
清倉時
 
 
(2)T恤的銷售單價(jià)定為多少元時,該批發(fā)商可獲得最大利潤?最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD中,AB=16cm,AD=4cm,點(diǎn)P、Q分別從A、B同時出發(fā),點(diǎn)P在邊AB上沿AB方向以2cm/s的速度勻速運(yùn)動,點(diǎn)Q在邊BC上沿BC方向以1cm/s的速度勻速運(yùn)動,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動.設(shè)運(yùn)動時間為x秒,△PBQ的面積為y(cm2).

(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,某居民小區(qū)要在一塊一邊靠墻(墻長15m)的空地上修建一個矩形花園ABCD,花園的一邊靠墻,另三邊用總長為40m的柵欄圍成,若花園的BC邊長為x米,花園的面積為y(m2

(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)滿足條件的花園面積能達(dá)到200m2嗎?若能,求出此時x的值;若不能,說明理由;
(3)請結(jié)合題意,判斷當(dāng)x取何值時,花園的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一家化工廠原來每月利潤為120萬元,從今年1月起安裝使用回收凈化設(shè)備(安裝時間不計(jì)),一方面改善了環(huán)境,另一方面大大降低原料成本.據(jù)測算,使用回收凈化設(shè)備后的1至x月(1≤x≤12)的利潤的月平均值w(萬元)滿足w=10x+90,第二年的月利潤穩(wěn)定在第1年的第12個月的水平.
(1)設(shè)使用回收凈化設(shè)備后的1至x月(1≤x≤12)的利潤和為y,寫出y關(guān)于x的函數(shù)關(guān)系式,并求前幾個月的利潤和等于700萬元;
(2)當(dāng)x為何值時,使用回收凈化設(shè)備后的1至x月的利潤和與不安裝回收凈化設(shè)備時x個月的利潤和相等;
(3)求使用回收凈化設(shè)備后兩年的利潤總和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)y=2(x﹣1)2+3的圖象的頂點(diǎn)坐標(biāo)是            .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

次函數(shù)取最大值時,x=                  .

查看答案和解析>>

同步練習(xí)冊答案