【題目】下列命題中,真命題是( )
A.對(duì)角線相等的四邊形是矩形
B.對(duì)角線互相垂直的四邊形是菱形
C.對(duì)角線互相平分的四邊形不一定是平行四邊形
D.對(duì)角線互相垂直平分且相等的四邊形一定是正方形
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)某賓館準(zhǔn)備購(gòu)進(jìn)一批換氣扇,從電器商場(chǎng)了解到:一臺(tái)A型換氣扇和三臺(tái)B型換氣扇共需275元;三臺(tái)A型換氣扇和二臺(tái)B型換氣扇共需300元.
(1)求一臺(tái)A型換氣扇和一臺(tái)B型換氣扇的售價(jià)各是多少元;
(2)若該賓館準(zhǔn)備同時(shí)購(gòu)進(jìn)這兩種型號(hào)的換氣扇共40臺(tái)并且A型換氣扇的數(shù)量不多于B型換氣扇數(shù)量的3倍,請(qǐng)?jiān)O(shè)計(jì)出最省錢的購(gòu)買方案,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某產(chǎn)品的商標(biāo)如圖所示,O是線段AC,DB的交點(diǎn),且AC=BD,AB=DC,小華認(rèn)為圖中的兩個(gè)三角形全等,他的思考過(guò)程是:
∵AC=DB,∠AOB=∠DOC,AB=AC,
∴△ABO≌△DCO
你認(rèn)為小華的思考過(guò)程對(duì)嗎?如果正確,指出他用的是判別三角形全等的哪個(gè)條件;如果不正確,寫(xiě)出你的思考過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果商從批發(fā)市場(chǎng)用8000元購(gòu)進(jìn)了大櫻桃和小櫻桃各200千克,大櫻桃的進(jìn)價(jià)比小櫻桃的進(jìn)價(jià)每千克多20元.大櫻桃售價(jià)為每千克40元,小櫻桃售價(jià)為每千克16元.
(1)大櫻桃和小櫻桃的進(jìn)價(jià)分別是每千克多少元?銷售完后,該水果商共賺了多少元錢?
(2)該水果商第二次仍用8000元錢從批發(fā)市場(chǎng)購(gòu)進(jìn)了大櫻桃和小櫻桃各200千克,進(jìn)價(jià)不變,但在運(yùn)輸過(guò)程中小櫻桃損耗了20%.若小櫻桃的售價(jià)不變,要想讓第二次賺的錢不少于第一次所賺錢的90%,大櫻桃的售價(jià)最少應(yīng)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(9分)如圖,△ABC為等腰三角形,AC=BC,以邊BC為直徑的半圓與邊AB,AC分別交于D,E兩點(diǎn),過(guò)點(diǎn)D作DF⊥AC,垂足為點(diǎn)F.
(1)判斷DF與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若BC=9,EF=1,求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】⑴ 一個(gè)數(shù)的平方等于它的本身的數(shù)是____________
⑵ 平方根等于它的本身的數(shù)是______________
⑶ 算術(shù)平方根等于它的本身的數(shù)是__________
⑷ 立方根等于它的本身的數(shù)是______________
⑸ 大于0且小于π的整數(shù)是________________
⑹ 滿足<x <的整數(shù)x是_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】粵海鐵路是我國(guó)第一條橫跨海峽的鐵路通道,設(shè)計(jì)年輸送貨物能力為11 000 000噸,用科學(xué)記數(shù)法應(yīng)記為( )
A.11×106噸
B.1.1×107噸
C.11×107噸
D.1.1×108噸
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列兩個(gè)圖形不一定相似的是( 。
A.兩個(gè)正方形B.兩個(gè)等腰直角三角形
C.兩個(gè)等邊三角形D.兩個(gè)等腰三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,C是⊙O上任一點(diǎn)(不與A,B重合),AB⊥CD于E,BF為⊙O的切線,OF∥AC,連接AF,CF,AF與CD交于點(diǎn)G,與⊙O交于點(diǎn)H,連接CH.
(1)求證:CF是⊙O的切線;
(2)求證:EG=GC;
(3)若cos∠AOC=,⊙O的半徑為9,求CH的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com