如圖,四邊形ABCD是正方形,G是BC上任意一點(點G與B、C不重合),AE⊥DG于E,CF∥AE交DG于F.
(1)在圖中找出一對全等三角形,并加以證明;
(2)請你經(jīng)過觀察、猜測線段FC、AE、EF之間是否存在一定的數(shù)量關(guān)系?若存在,證明你的結(jié)論;若不存在,請說明理由.

【答案】分析:(1)利用正方形的特性可知AD=DC,∠ADC=90°,再結(jié)合題中所給的有關(guān)角的等量關(guān)系可證明△AED≌△DFC;
(2)由上一問可知AE=DF,ED=FC,結(jié)合DF=DE+EF,可求得AE=FC+EF.
解答:解:(1)△AED≌△DFC.理由為:
證明:∵四邊形ABCD是正方形,
∴AD=DC,∠ADC=90度.
又∵AE⊥DG,CF∥AE,
∴∠AED=∠DFC=90°,
∴∠EAD+∠ADE=∠FDC+∠ADE=90°,
∴∠EAD=∠FDC.
∴△AED≌△DFC(AAS).

(2)∵△AED≌△DFC,
∴AE=DF,ED=FC.
∵DF=DE+EF,
∴AE=FC+EF.
點評:本題考查三角形全等的判定方法和全等三角形的性質(zhì),判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設(shè)AC=2a,BD=2b,請推導(dǎo)這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案