【題目】如圖,菱形的面積為,對(duì)角線,交于點(diǎn),點(diǎn),,,分別是,,,的中點(diǎn),連接,,,得到菱形;點(diǎn),,,分別是,,,的中點(diǎn),連接,,,,得到菱形;…,依此類(lèi)推,則菱形的面積為________.
【答案】(或)
【解析】
根據(jù)面積的比等于相似比的平方進(jìn)行計(jì)算,菱形AlBlClDl的面積等于菱形ABCD的面積的 ,即為;菱形A2B2C2D2的面積等于菱形AlBlClDl的面積的,即,依此類(lèi)推,則菱形A2009B2009C2009D2009的面積為.
解:∵點(diǎn)Al,Bl,Cl,Dl分別是OA,OB,OC,OD的中點(diǎn),
∴=,
易知:菱形AlBlClDl∽菱形ABCD,
∵菱形ABCD的面積為l,
∴菱形AlBlClDl的面積等于,
∴菱形A2B2C2D2的面積等于菱形AlBlClDl的面積的,即,
依此類(lèi)推,菱形A2009B2009C2009D2009的面積為.
故答案為(或).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC是等邊三角形,點(diǎn)D,E分別在直線BC,AC上.
(1)如圖1,當(dāng)BD=CE時(shí),連接AD與BE交于點(diǎn)P,則線段AD與BE的數(shù)量關(guān)系是____________;∠APE的度數(shù)是_______________;
(2)如圖2,若“BD=CE”不變,AD與EB的延長(zhǎng)線交于點(diǎn)P,那么(1)中的兩個(gè)結(jié)論是否仍然成立?請(qǐng)說(shuō)明理由.
(3)如圖3,若AE=BD,連接DE與AB邊交于點(diǎn)M,求證:點(diǎn)M是DE的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,為邊上的一動(dòng)點(diǎn)(點(diǎn)不與、兩點(diǎn)重合).交于點(diǎn),交于點(diǎn).
下列條件中:①;②是的中線;③是的角平分線;④是的高,請(qǐng)選擇一個(gè)滿足的條件,使得四邊形為菱形,并證明;
答:我選擇________.(填序號(hào))
在選擇的條件下,再滿足條件:________,四邊形即成為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,平分,且交于點(diǎn),平分,且交于點(diǎn),與相交于點(diǎn),連接
求的度數(shù);
求證:四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)是一個(gè)嚴(yán)重缺水的國(guó)家.為了加強(qiáng)公民的節(jié)水意識(shí),某市制定了如下用水收費(fèi)標(biāo)準(zhǔn):每戶每月的用水不超過(guò)6噸時(shí),水價(jià)為每噸2元,超過(guò)6噸時(shí),超過(guò)的部分按每噸3元收費(fèi).該市某戶居民5月份用水x噸,應(yīng)交水費(fèi)y元.
(1)若0<x≤6,請(qǐng)寫(xiě)出y與x的函數(shù)關(guān)系式.
(2)若x>6,請(qǐng)寫(xiě)出y與x的函數(shù)關(guān)系式.
(3)在同一坐標(biāo)系下,畫(huà)出以上兩個(gè)函數(shù)的圖象.
(4)如果該戶居民這個(gè)月交水費(fèi)27元,那么這個(gè)月該戶用了多少?lài)嵥?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,平分,,分別交,,,的延長(zhǎng)線于,,,,已知下列四個(gè)式子:①;②;③;④.其中正確的式子有__________(填寫(xiě)序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形和點(diǎn),當(dāng)點(diǎn)在上任一位置(如圖所示)時(shí),易證得結(jié)論:,請(qǐng)你探究:當(dāng)點(diǎn)分別在圖、圖中的位置時(shí),、、和又有怎樣的數(shù)量關(guān)系請(qǐng)你寫(xiě)出對(duì)上述兩種情況的探究結(jié)論,并利用圖證明你的結(jié)論.
答:對(duì)圖的探究結(jié)論為________;
對(duì)圖的探究結(jié)論為________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AC=AD,BC=BE,∠ACB=100°,則∠ECD=( 。
A.20°B.30°C.40°D.50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為一座拋物線型的拱橋,AB、CD分別表示兩個(gè)不同位置的水面寬度,O為拱橋頂部,水面AB寬為10米,AB距橋頂O的高度為12.5米,水面上升2.5米到達(dá)警戒水位CD位置時(shí),水面寬為( )米.
A. 5 B. 2 C. 4 D. 8
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com