如圖,AB是O的直徑,C為AB延長線上一點,CD交O于點D,且∠A=∠C=30º.
(1)證明CD是的切線;
(2)請你寫出線段BC和AC之間的數(shù)量關(guān)系,并證明.
(1)連接OD,證明∠ODC=90°
【解析】
試題分析:(1)證明:連接OD.
∵AB是直徑,
∴∠ADB=90°,
∵∠A=30°,
∴∠ABD=60°,
∴△OBD是等邊三角形,
∴∠BOD=60°,
又∵∠C=30°,
∴∠ODC=90°,
即OD⊥DC,
故DC是⊙O的切線;
(2)∵OD⊥DC,且△OBD是等邊三角形,
∴∠C=∠CDB=30°,BD=OB,
∴BD=BC,
∴OB=BC,
∴OB=BC=OA,
∴AC=3BC.
考點:切線的判定和性質(zhì)
點評:本題考查了等邊三角形的判定和性質(zhì)、切線的判定和性質(zhì)、直角三角形中30°的角所對的直角邊等于斜邊的一半.解題的關(guān)鍵是連接OD,并證明△OBD是等邊三角形.
科目:初中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com