如圖,△ABC面積為1,第一次操作:分別延長(zhǎng)AB,BC,CA至點(diǎn)A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,順次連接A1,B1,C1,得到△A1B1C1.第二次操作:分別延長(zhǎng)A1B1,B1C1,C1A1至點(diǎn)A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,順次連接A2,B2,C2,得到△A2B2C2,…按此規(guī)律,要使得到的三角形的面積超過2006,最少經(jīng)過________次操作.

4
分析:根據(jù)題意分析可得:每次操作后,△CC1B1、△A1B1B、△AA1C1邊長(zhǎng)變?yōu)椤鰽BC邊長(zhǎng)的2倍,故△A1B1C1面積變大為△ABC面積的7倍;即第n次操作后,面積變?yōu)?n;故要使得到的三角形的面積超過2006,最少經(jīng)過4次操作.
解答:由題意可得規(guī)律第n次操作后,面積變?yōu)?n,則7n≥2006,解得n最小為4.
故最少經(jīng)過4次操作.
點(diǎn)評(píng):本題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對(duì)于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,△ABC面積為1,第一次操作:分別延長(zhǎng)AB,BC,CA至點(diǎn)A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,順次連接A1,B1,C1,得到△A1B1C1.第二次操作:分別延長(zhǎng)A1B1,B1C1,C1A1至點(diǎn)A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,順次連接A2,B2,C2,得到△A2B2C2,…按此規(guī)律,要使得到的三角形的面積超過2006,最少經(jīng)過
4
次操作.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,△ABC面積為1,第一次操作:分別延長(zhǎng)AB,BC,CA至點(diǎn)A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,順次連接A1,B1,C1,得到△A1B1C1.第二次操作:分別延長(zhǎng)A1B1,B1C1,C1A1至點(diǎn)A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,順次連接A2,B2,C2,得到△A2B2C2,…按此規(guī)律,要使得到的三角形的面積超過2010,最少經(jīng)過_____次操作( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC面積為48,E,F(xiàn)分別為AB,AC中點(diǎn),則矩形EFGH的面積為
24
24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC面積為1,
(1)若AF=CF,則△ABF的面積是
1
2
1
2

(2)若AE=ED,BD=
2
3
BC,則陰影部分面積是
2
5
2
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年北京市通州區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:選擇題

如圖,△ABC面積為1,第一次操作:分別延長(zhǎng)AB,BC,CA至點(diǎn)A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,順次連接A1,B1,C1,得到△A1B1C1.第二次操作:分別延長(zhǎng)A1B1,B1C1,C1A1至點(diǎn)A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,順次連接A2,B2,C2,得到△A2B2C2,…按此規(guī)律,要使得到的三角形的面積超過2010,最少經(jīng)過_____次操作( )

A.6
B.5
C.4
D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案