己知a-b=4,求代數(shù)式數(shù)學(xué)公式(a-b)2-9(a-b)-數(shù)學(xué)公式(a-b)2-5(b-a)的值.

解:(a-b)2-9(a-b)-(a-b)2-5(b-a),
=(a-b)2-9(a-b)-(a-b)2+5(a-b),
=-(a-b)2-4(a-b),
∵a-b=4,
∴原式=-×42-4×4
=-4-16
=-20.
分析:變形后合并同類項(xiàng)得出-(a-b)2-4(a-b),把a(bǔ)-b=4代入求出即可.
點(diǎn)評:本題考查了整式的加減、求代數(shù)式的值等知識點(diǎn),注意:用了整體代入得思想,即把a(bǔ)-b當(dāng)作一個整體來代入.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

請閱讀下列材料:
問題:已知方程x2+x-1=0,求一個一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x所以x=
y
2

把x=
y
2
代入已知方程,得(
y
2
2+
y
2
-1=0
化簡,得y2+2y-4=0
故所求方程為y2+2y-4=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
請用閱讀村料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+x-2=0,求一個一元二次方程,使它的根分別為己知方程根的相反數(shù),則所求方程為:
 
;
(2)己知關(guān)于x的一元二次方程ax2+bx+c=0有兩個不等于零的實(shí)數(shù)根,求一個一元二次方程,使它的根分別是己知方程根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年福建省龍巖市長汀縣新橋二中九年級(上)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

請閱讀下列材料:
問題:已知方程x2+x-1=0,求一個一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x所以x=
把x=代入已知方程,得(2+-1=0
化簡,得y2+2y-4=0
故所求方程為y2+2y-4=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
請用閱讀村料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+x-2=0,求一個一元二次方程,使它的根分別為己知方程根的相反數(shù),則所求方程為:______;
(2)己知關(guān)于x的一元二次方程ax2+bx+c=0有兩個不等于零的實(shí)數(shù)根,求一個一元二次方程,使它的根分別是己知方程根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年廣東省湛江市中考數(shù)學(xué)模擬試卷(七)(解析版) 題型:解答題

請閱讀下列材料:
問題:已知方程x2+x-1=0,求一個一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x所以x=
把x=代入已知方程,得(2+-1=0
化簡,得y2+2y-4=0
故所求方程為y2+2y-4=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
請用閱讀村料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+x-2=0,求一個一元二次方程,使它的根分別為己知方程根的相反數(shù),則所求方程為:______;
(2)己知關(guān)于x的一元二次方程ax2+bx+c=0有兩個不等于零的實(shí)數(shù)根,求一個一元二次方程,使它的根分別是己知方程根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年貴州省黔西南州中考數(shù)學(xué)試卷(解析版) 題型:解答題

請閱讀下列材料:
問題:已知方程x2+x-1=0,求一個一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x所以x=
把x=代入已知方程,得(2+-1=0
化簡,得y2+2y-4=0
故所求方程為y2+2y-4=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
請用閱讀村料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+x-2=0,求一個一元二次方程,使它的根分別為己知方程根的相反數(shù),則所求方程為:______;
(2)己知關(guān)于x的一元二次方程ax2+bx+c=0有兩個不等于零的實(shí)數(shù)根,求一個一元二次方程,使它的根分別是己知方程根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年湖北省十堰市中考數(shù)學(xué)試卷(解析版) 題型:解答題

請閱讀下列材料:
問題:已知方程x2+x-1=0,求一個一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x所以x=
把x=代入已知方程,得(2+-1=0
化簡,得y2+2y-4=0
故所求方程為y2+2y-4=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
請用閱讀村料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+x-2=0,求一個一元二次方程,使它的根分別為己知方程根的相反數(shù),則所求方程為:______;
(2)己知關(guān)于x的一元二次方程ax2+bx+c=0有兩個不等于零的實(shí)數(shù)根,求一個一元二次方程,使它的根分別是己知方程根的倒數(shù).

查看答案和解析>>

同步練習(xí)冊答案