(2012•西城區(qū)模擬)探索一個問題:“任意給定一個矩形A,是否存在另一個矩形B,它的周長和面積分別是已知矩形周長和面積的一半?”
(1)完成下列空格:
當已知矩形A的邊長分別為6和1時,小明是這樣研究的:設所求矩形的一邊是x,則另一邊為(
-x),由題意得方程:x(
-x)=3,化簡得:2x
2-7x+6=0
∵b
2-4ac=49-48>0,∴x
1=
2
2
,x
2=
.
∴滿足要求的矩形B存在.
小紅的做法是:設所求矩形的兩邊分別是x和y,由題意得方程組:
消去y化簡后也得到:2x
2-7x+6=0,(以下同小明的做法)
(2)如果已知矩形A的邊長分別為2和1,請你仿照小明或小紅的方法研究是否存在滿足要求的矩形B.
(3)在小紅的做法中,我們可以把方程組整理為:
,此時兩個方程都可以看成是函數解析式,從而我們可以利用函數圖象解決一些問題.如圖,在同一平面直角坐標系中畫出了一次函數和反比例函數的部分圖象,其中x和y分別表示矩形B的兩邊長,請你結合剛才的研究,回答下列問題:(完成下列空格)
①這個圖象所研究的矩形A的面積為
8
8
;周長為
18
18
.
②滿足條件的矩形B的兩邊長為
和
.