【題目】如圖,在矩形ABCD中,點(diǎn)E是邊AD的中點(diǎn),連接BE、CE.
(1)求證:△ABE≌△DCE;
(2)當(dāng)BC=2AB,求∠BEC的大小.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿CE向上折疊,使點(diǎn)B落在AD邊上的點(diǎn)F處.若AE=BE,則長AD與寬AB的比值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解放中學(xué)為了了解學(xué)生對新聞、體育、動(dòng)畫、娛樂四類電視節(jié)目的喜愛程度,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查(每人限選1項(xiàng)),現(xiàn)將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中所給的信息解答下列問題.
(1)喜愛動(dòng)畫的學(xué)生人數(shù)和所占比例分別是多少?
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校共有學(xué)生1000人,依據(jù)以上圖表估計(jì)該校喜歡體育的人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,方格圖中每個(gè)小正方形的邊長為1,點(diǎn)A、B、C都是格點(diǎn).
(1)畫出△ABC關(guān)于直線MN對稱的△A1B1C1;
(2)直接寫出AA1的長度;
(3)如圖2,A、C是直線MN同側(cè)固定的點(diǎn),D是直線MN上的一個(gè)動(dòng)點(diǎn),在直線MN上畫出點(diǎn)D,使AD+DC最。ūA糇鲌D痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)平面內(nèi)有兩點(diǎn)A(0,2)、B(﹣2,0)、C(2,0).
(1)△ABC的形狀是 等腰直角三角形;
(2)求△ABC的面積及AB的長;
(3)在y軸上找一點(diǎn)P,如果△PAB是等腰三角形,請直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李暉到“宇泉牌”服裝專賣店做社會(huì)調(diào)查.了解到商店為了激勵(lì)營業(yè)員的工作積極性,實(shí)行“月總收入=基本工資+計(jì)件獎(jiǎng)金”的方法,并獲得如下信息:
營業(yè)員 | 小俐 | 小花 |
月銷售件數(shù)(件) | 200 | 150 |
月總收入(元) | 1400 | 1250 |
假設(shè)月銷售件數(shù)為件,月總收入為元,銷售每件獎(jiǎng)勵(lì)元,營業(yè)員月基本工資為元.
(1)求的值;
(2)若營業(yè)員小俐某月總收入不低于元,那么小俐當(dāng)月至少要賣服裝多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電腦經(jīng)銷商計(jì)劃購進(jìn)一批電腦機(jī)箱和液晶顯示器,若購電腦機(jī)箱10臺(tái)和液液晶顯示器8臺(tái),共需要資金7000元;若購進(jìn)電腦機(jī)箱2臺(tái)和液示器5臺(tái),共需要資金4120元.
(1)每臺(tái)電腦機(jī)箱、液晶顯示器的進(jìn)價(jià)各是多少元?
(2)該經(jīng)銷商購進(jìn)這兩種商品共50臺(tái),而可用于購買這兩種商品的資金不超過22240元.根據(jù)市場行情,銷售電腦機(jī)箱、液晶顯示器一臺(tái)分別可獲利10元和160元.該經(jīng)銷商希望銷售完這兩種商品,所獲利潤不少于4100元.試問:該經(jīng)銷商有哪幾種進(jìn)貨方案?哪種方案獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,樓房CD旁邊有一池塘,池塘中有一電線桿BE高10米,在池塘邊F處測得電線桿頂端E的仰角為45°,樓房頂點(diǎn)D的仰角為75°,又在池塘對面的A處,觀測到A,E,D在同一直線上時(shí),測得電線桿頂端E的仰角為30°.
(1)求池塘A,F(xiàn)兩點(diǎn)之間的距離;
(2)求樓房CD的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在Rt△ABC中,∠A=90°,AC=AB=4,D,E分別是AB,AC的中點(diǎn).若等腰Rt△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),得到等腰Rt△AD1E1,如圖(2),設(shè)旋轉(zhuǎn)角為α(0<α≤180°),記直線BD1與CE1的交點(diǎn)為P.
(1)求證:BD1=CE1;(2)當(dāng)∠CPD1=2∠CAD1時(shí),求CE1的長;
(3)連接PA,△PAB面積的最大值為 .(直接填寫結(jié)果)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com