22、在?ABCD中,分別以AD、BC為邊向內(nèi)作等邊△ADE和等邊△BCF,連接BE、DF.求證:四邊形BEDF是平行四邊形.
分析:由題意先證∠DAE=∠BCF=60°,再由SAS證△DCF≌△BAE,繼而題目得證.
解答:證明:∵四邊形ABCD是平行四邊形,
∴CD=AB,AD=CB,∠DAB=∠BCD.
又∵△ADE和△CBF都是等邊三角形,
∴DE=BF,AE=CF.
∠DAE=∠BCF=60°.
∵∠DCF=∠BCD-∠BCF,
∠BAE=∠DAB-∠DAE,
∴∠DCF=∠BAE.
∴△DCF≌△BAE(SAS).
∴DF=BE.
∴四邊形BEDF是平行四邊形.
點評:本題考查了平行四邊形的判定與性質(zhì),熟練掌握性質(zhì)定理和判定定理是解題的關(guān)鍵.平行四邊形的五種判定方法與平行四邊形的性質(zhì)相呼應(yīng),每種方法都對應(yīng)著一種性質(zhì),在應(yīng)用時應(yīng)注意它們的區(qū)別與聯(lián)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,在?ABCD中,分別以AB、AD為邊向外作等邊△ABE、△ADF,延長CB交AE于點G,點G在點A、E之間,連接CE、CF,則以下四個結(jié)論一定正確的是:①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等邊△;④CG⊥AE( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABCD中,分別以AB、AD為邊向外作等邊△ABE、△ADF,延長CB交AE于點G,點G在點A,
E之間,連接CE、CF、EF,有下列四個結(jié)論:
①△CDF≌△EBC;     ②∠CDF=∠EAF;
③△ECF是等邊三角形;  ④CG⊥AE,
請把你認為正確的結(jié)論的序號填在橫線上
①②③
①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年吉林鎮(zhèn)賚鎮(zhèn)賚鎮(zhèn)中學(xué)九年級下第一次綜合測試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,在□ABCD中,分別延長BA、DC到點E、H,使得AE=AB,CH=CD,連接EH,分別交AD,BC于點F、G.求證:△AEF≌△CHG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆吉林鎮(zhèn)賚鎮(zhèn)賚鎮(zhèn)中學(xué)九年級下第一次綜合測試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在□ABCD中,分別延長BA、DC到點E、H,使得AE=AB,CH=CD,連接EH,分別交AD,BC于點F、G.求證:△AEF≌△CHG.

 

查看答案和解析>>

同步練習(xí)冊答案