如圖在平面直角坐標(biāo)系中,將一塊等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,且點(diǎn)A(0,2),點(diǎn)C(-1,0),如圖所示點(diǎn)B在拋物線y=ax2+ax-2上.
(1)求點(diǎn)B的坐標(biāo);
(2)求拋物線的解析式;
(3)將三角板ABC繞頂點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)90°到達(dá)△AB′C′的位置,請(qǐng)寫(xiě)出點(diǎn)B′坐標(biāo)______,點(diǎn)C′坐標(biāo)______;判斷點(diǎn)B′______,C′______(填“在”或“不”)在(2)中的拋物線上.
(1)過(guò)點(diǎn)B作BD⊥x軸,垂足為D,
∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°,
∴∠BCD=∠CAO,
又∵∠BDC=∠COA=90°,CB=AC,
∴△BCD≌△CAO,
∴BD=OC=1,CD=OA=2,
∴點(diǎn)B的坐標(biāo)為(-3,1);

(2)∵拋物線y=ax2+ax-2經(jīng)過(guò)點(diǎn)B(-3,1),
∴1=9a-3a-2,解得a=
1
2

∴拋物線的解析式為:y=
1
2
x2+
1
2
x-2;

(3)如圖,過(guò)點(diǎn)B′作B′M⊥y軸于點(diǎn)M,過(guò)點(diǎn)B作BN⊥y軸于點(diǎn)N,過(guò)點(diǎn)C″作C″P⊥y軸于點(diǎn)P,
在Rt△AB′M與Rt△BAN中,
∵∠AMB'=∠ANB=90°,∠AB′M=∠BAN=90°-∠B′AM,
∴∠ABN=∠B′AM,
在Rt△AB′M與Rt△BAN.
∠AB′M=∠BAN
AB=AB′
∠ABN=∠B′AM
,
∴Rt△AB′M≌Rt△BAN.
∴B′M=AN=1,AM=BN=3,
∴B′(1,-1).
同理△AC′P≌△CAO,C′P=OA=2,AP=OC=1,可得點(diǎn)C′(2,1);
將點(diǎn)B′、C′的坐標(biāo)代入y=
1
2
x2+
1
2
x-2,可知點(diǎn)B′、C′在拋物線上.
故答案為:(1,-1),(2,1),在,在.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示的平面直角坐標(biāo)系中,有一條拋物線y=ax2+bx+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,已知拋物線的對(duì)稱(chēng)軸為x=1,B(3,0),C(0,-3).
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)在拋物線對(duì)稱(chēng)軸上是否存在一點(diǎn)P,使點(diǎn)P到A、C兩點(diǎn)距離之和最小?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線y=ax2+bx+c(a<0)交x軸于點(diǎn)A(-1,0)、B(3,0),交y軸于點(diǎn)C,頂點(diǎn)為D,以BD為直徑的⊙M恰好過(guò)點(diǎn)C.
(1)求頂點(diǎn)D的坐標(biāo)(用a的代數(shù)式表示);
(2)求拋物線的解析式;
(3)拋物線上是否存在點(diǎn)P使△PBD為直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知如圖,矩形OABC的長(zhǎng)OA=
3
,寬OC=1,將△AOC沿AC翻折得△APC.
(1)填空:∠PCB=______度,P點(diǎn)坐標(biāo)為_(kāi)_____;
(2)若P,A兩點(diǎn)在拋物線y=-
4
3
x2+bx+c上,求b,c的值,并說(shuō)明點(diǎn)C在此拋物線上;
(3)在(2)中的拋物線CP段(不包括C,P點(diǎn))上,是否存在一點(diǎn)M,使得四邊形MCAP的面積最大?若存在,求出這個(gè)最大值及此時(shí)M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y1=-ax2-ax+1經(jīng)過(guò)點(diǎn)P(-
1
2
,
9
8
),且與拋物線y2=ax2-ax-1相交于A,B兩點(diǎn).
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫(xiě)出一條正確的結(jié)論,并通過(guò)計(jì)算說(shuō)明;
(3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動(dòng)點(diǎn)Q(x,0),且xA≤x≤xB,過(guò)Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D兩點(diǎn),試問(wèn)當(dāng)x為何值時(shí),線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=x2+bx-a2
(1)請(qǐng)你選定a、b適當(dāng)?shù)闹担缓髮?xiě)出這條拋物線與坐標(biāo)軸的三個(gè)交點(diǎn),并畫(huà)出過(guò)三個(gè)交點(diǎn)的圓;
(2)試討論此拋物線與坐標(biāo)軸交點(diǎn)分別是1個(gè),2個(gè),3個(gè)時(shí),a、b的取值范圍,并且求出交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,BC=7cm,AC=24cm,AB=25cm,P點(diǎn)在BC上,從B點(diǎn)到C點(diǎn)運(yùn)動(dòng)(不包括C點(diǎn)),點(diǎn)P運(yùn)動(dòng)的速度為2cm/s;Q點(diǎn)在AC上從C點(diǎn)運(yùn)動(dòng)到A點(diǎn)(不包括A點(diǎn)),速度為5cm/s.若點(diǎn)P、Q分別從B、C同時(shí)運(yùn)動(dòng),請(qǐng)解答下面的問(wèn)題,并寫(xiě)出探索的主要過(guò)程:
(1)經(jīng)過(guò)多少時(shí)間后,P、Q兩點(diǎn)的距離為5
2
cm2
(2)經(jīng)過(guò)多少時(shí)間后,S△PCQ的面積為15cm2
(3)請(qǐng)用配方法說(shuō)明,何時(shí)△PCQ的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)系xOy中,點(diǎn)P為函數(shù)y=
1
4
x2在第一象限內(nèi)的圖象上的任一點(diǎn),點(diǎn)A的坐標(biāo)為(0,1),直線l過(guò)B(0,-1)且與x軸平行,過(guò)P作y軸的平行線分別交x軸,l于C,Q,連接AQ交x軸于H,直線PH交y軸于R.
(1)求證:H點(diǎn)為線段AQ的中點(diǎn);
(2)求證:①四邊形APQR為平行四邊形;②平行四邊形APQR為菱形;
(3)除P點(diǎn)外,直線PH與拋物線y=
1
4
x2有無(wú)其它公共點(diǎn)并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某市政府大力扶持大學(xué)生創(chuàng)業(yè),李明在政府的扶持下投資銷(xiāo)售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷(xiāo)售過(guò)程中發(fā)現(xiàn),每月銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):y=-10x+500.
(1)設(shè)李明每月獲得利潤(rùn)為w(元),當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?
(2)如果李明想要每月獲得2000元的利潤(rùn),那么銷(xiāo)售單價(jià)應(yīng)定為多少元?
(3)根據(jù)物價(jià)部門(mén)規(guī)定,這種護(hù)眼臺(tái)燈的銷(xiāo)售單價(jià)不得高于32元,如果李明想要每月獲得的利潤(rùn)不低于2000元,那么他每月的成本最少需要多少元?
(成本=進(jìn)價(jià)×銷(xiāo)售量)

查看答案和解析>>

同步練習(xí)冊(cè)答案