【題目】如圖,在⊙O中,OB為半徑,AB是⊙O的切線,OA與⊙O相交于點(diǎn)C,∠A=30°,OA=8,則陰影部分的面積是

【答案】8 π
【解析】解:∵AB是⊙O的切線, ∴OB⊥AB,
∴∠OBA=90°,
∵∠A=30°,OA=8,
∴OB= OA=4,AB= OB=4 ,∠BOC=60°,
∴S陰影部分=SAOB﹣S扇形OBC= ×4×4 π42=8 π,
所以答案是8 π.
【考點(diǎn)精析】利用切線的性質(zhì)定理和扇形面積計(jì)算公式對題目進(jìn)行判斷即可得到答案,需要熟知切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答題
(1)先化簡,再求值:(x+1)2+x(2﹣x),其中x=
(2)解不等式組 ,并把解集表示在數(shù)軸上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個三角形三個內(nèi)角度數(shù)的比為1:2:3,那么這個三角形最小角的正切值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的邊AC與⊙O相交于C,D兩點(diǎn),且經(jīng)過圓心O,邊AB與⊙O相切,切點(diǎn)為B.如果∠A=34°,那么∠C等于(

A.28°
B.33°
C.34°
D.56°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+4與x軸、y軸分別交于點(diǎn)A、B.拋物線y=﹣ +n的頂點(diǎn)P在直線y=﹣x+4上,與y軸交于點(diǎn)C(點(diǎn)P、C不與點(diǎn)B重合),以BC為邊作矩形BCDE,且CD=2,點(diǎn)P、D在y軸的同側(cè).
(1)n=(用含m的代數(shù)式表示),點(diǎn)C的縱坐標(biāo)是(用含m的代數(shù)式表示).
(2)當(dāng)點(diǎn)P在矩形BCDE的邊DE上,且在第一象限時,求拋物線對應(yīng)的函數(shù)表達(dá)式.
(3)設(shè)矩形BCDE的周長為d(d>0),求d與m之間的函數(shù)表達(dá)式.
(4)直接寫出矩形BCDE有兩個頂點(diǎn)落在拋物線上時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答題
(1)操作發(fā)現(xiàn):如圖,小明在矩形紙片ABCD的邊AD上取中點(diǎn)E,將△ABE沿BE折疊后得到△GBE,且點(diǎn)G在矩形ABCD內(nèi)部,將BG延長交DC于點(diǎn)F,認(rèn)為GF=DF,你同意嗎?說明理由.
(2)問題解決:保持(1)中條件不變,若DC=2FC,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某中學(xué)學(xué)生對“厲行勤儉節(jié)約,反對鋪張浪費(fèi)”主題活動的參與情況.小強(qiáng)在全校范圍內(nèi)隨機(jī)抽取了若干名學(xué)生并就某日午飯浪費(fèi)飯菜情況進(jìn)行了調(diào)查.將調(diào)查內(nèi)容分為四組:A.飯和菜全部吃完;B.有剩飯但菜吃完;C.飯吃完但菜有剩;D.飯和菜都有剩.根據(jù)調(diào)查結(jié)果,繪制了如圖所示兩幅尚不完整的統(tǒng)計(jì)圖.

回答下列問題:
(1)這次被抽查的學(xué)生共有人,扇形統(tǒng)計(jì)圖中,“B組”所對應(yīng)的圓心角的度數(shù)為;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)已知該中學(xué)共有學(xué)生2500人,請估計(jì)這日午飯有剩飯的學(xué)生人數(shù);若按平均每人剩10克米飯計(jì)算,這日午飯將浪費(fèi)多少千克米飯?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,平行四邊形ABOC如圖放置,點(diǎn)A、C的坐標(biāo)分別是為(0,3)、(-1,0),將此平行四邊形繞點(diǎn)O順時針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′.

(1)若拋物線過點(diǎn)C、A、A′,求此拋物線的解析式;
(2)求平行四邊形ABOC和平行四邊形A′B′OC′重疊部分△OC′D的周長;
(3)點(diǎn)M是第一象限內(nèi)拋物線上的一動點(diǎn),問:點(diǎn)M在何處時;△AMA′的面積最大?最大面積是多少?并求出此時點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級(1)班共有學(xué)生50人,據(jù)統(tǒng)計(jì)原來每人每年用于購買飲料的平均支出是a元.經(jīng)測算和市場調(diào)查,若該班學(xué)生集體改飲某品牌的桶裝純凈水,則年總費(fèi)用由兩部分組成,一部分是購買純凈水的費(fèi)用,另一部分是其它費(fèi)用780元,其中,純凈水的銷售價x(元/桶)與年購買總量y(桶)之間滿足如圖所示關(guān)系.
(1)求y與x的函數(shù)關(guān)系式;
(2)若該班每年需要純凈水380桶,且a為120時,請你根據(jù)提供的信息分析一下:該班學(xué)生集體改飲桶裝純凈水與個人買飲料,哪一種花錢更少?
(3)當(dāng)a至少為多少時,該班學(xué)生集體改飲桶裝純凈水一定合算從計(jì)算結(jié)果看,你有何感想?(不超過30字)

查看答案和解析>>

同步練習(xí)冊答案