【題目】如圖,一次函數(shù)ykx+3的圖象分別交x軸、y軸于點(diǎn)B、點(diǎn)C,與反比例函數(shù)的圖象在第四象限的相交于點(diǎn)P,并且PAy軸于點(diǎn)A,已知A 0,﹣6),且SCAP18

1)求上述一次函數(shù)與反比例函數(shù)的表達(dá)式;

2)設(shè)Q是一次函數(shù)ykx+3圖象上的一點(diǎn),且滿足△OCQ的面積是△BCO面積的2倍,求出點(diǎn)Q的坐標(biāo).

【答案】1y= ; y=;(2Q1(), Q2()

【解析】

1)根據(jù)一次函數(shù)解析式可得到點(diǎn)C的坐標(biāo)為(03),已知SCAP18,可求得點(diǎn)A、點(diǎn)P的坐標(biāo),點(diǎn)P在一次函數(shù)和反比例函數(shù)上,利用待定系數(shù)法即可求得函數(shù)解析式.

2)設(shè)點(diǎn)Q的坐標(biāo)(m,m+3),根據(jù)一次函數(shù)解析式可知點(diǎn)B坐標(biāo),結(jié)合等底三角形面積性質(zhì)可得到關(guān)于m的一元一次方程,解方程即可求得m值,進(jìn)而求得Q點(diǎn)坐標(biāo).

1)令一次函數(shù)y=kx+3中的x=0,則y=3

即點(diǎn)C的坐標(biāo)為(0,3),

AC=3--6=9

SCAP=AC·AP=18

AP=4,

∵點(diǎn)A的坐標(biāo)為(0,-6),

∴點(diǎn)P的坐標(biāo)為(4,-6).

∵點(diǎn)P在一次函數(shù)y=kx+3的圖象上,

-6=4k+3,解得:k=

∵點(diǎn)P在反比例函數(shù)的圖象上,

-6=,解得:n=-24

∴一次函數(shù)的表達(dá)式為y=x+3,反比例函數(shù)的表達(dá)式為

2)令一次函數(shù)=y=x+3中的y=0

解得x=

即點(diǎn)B的坐標(biāo)為(,0).

設(shè)點(diǎn)Q的坐標(biāo)為(m,m+3

∵△OCQ的面積是△BCO面積的2倍,

|m|=2×,解得:m=±,

∴點(diǎn)Q的坐標(biāo)為Q1() Q2()

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某種水果的批發(fā)單價(jià)與批發(fā)量的函數(shù)關(guān)系如圖1所示.

1)請(qǐng)說明圖中、兩段函數(shù)圖象的實(shí)際意義;

2)寫出批發(fā)該種水果的資金金額w(元)與批發(fā)量mkg)之間的函數(shù)關(guān)系式;在圖2的坐標(biāo)系中畫出該函數(shù)圖象;指出金額在什么范圍內(nèi),以同樣的資金可以批發(fā)到較多數(shù)量的該種水果;

3)經(jīng)調(diào)查,某經(jīng)銷商銷售該種水果的日最高銷量與零售價(jià)之間的函數(shù)關(guān)系如圖3所示,該經(jīng)銷商擬每日售出60kg以上該種水果,且當(dāng)日零售價(jià)不變,請(qǐng)你幫助該經(jīng)銷商設(shè)計(jì)進(jìn)貨和銷售的方案,使得當(dāng)日獲得的利潤(rùn)最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如何求tan75°的值?按下列方法作圖可解決問題,如圖,在RtABC中,ACk,∠ACB90°,∠ABC30°,延長(zhǎng)CB至點(diǎn)M,在射線BM上截取線段BD,使BDAB,連接AD,依據(jù)此圖可求得tan75°的值為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在鈍角三角形中,分別以為斜邊向的外側(cè)作等腰直角三角形和等腰直角三角形,平分于點(diǎn),取的中點(diǎn),的中點(diǎn),連接,,下列結(jié)論:①;②;③;④.其中正確結(jié)論有( )

A. 個(gè)B. 個(gè)C. 個(gè)D. 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB=AC=10,BC=12,P是上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作BC的平行線交AB的延長(zhǎng)線于點(diǎn)D.

(1)當(dāng)點(diǎn)P在什么位置時(shí),DP是⊙O的切線?請(qǐng)說明理由;

(2)當(dāng)DP為⊙O的切線時(shí),求線段DP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉?chǎng)購物的支付方式更加多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問題:

(1)這次活動(dòng)共調(diào)查了   人;在扇形統(tǒng)計(jì)圖中,表示支付寶支付的扇形圓心角的度數(shù)為   ;

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.觀察此圖,支付方式的眾數(shù)   ”;

(3)在一次購物中,小明和小亮都想從微信”、“支付寶”、“銀行卡三種支付方式中選一種方式進(jìn)行支付,請(qǐng)用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC10,以AB為直徑的OOBC相交于點(diǎn)D,與AC相交于點(diǎn)EDFAC,垂足為F,連接DE,過點(diǎn)AAGDE,垂足為G,AG與⊙O交于點(diǎn)H

1)求證:DF是⊙O的切線;

2)若∠CAG25°,求弧AH的長(zhǎng);

3)若tanCDF,求AE的長(zhǎng);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校1200名學(xué)生發(fā)起向貧困山區(qū)學(xué)生捐款活動(dòng),為了解捐款情況,學(xué)生會(huì)隨機(jī)抽取了部分學(xué)生的捐款金額,并用得到的數(shù)據(jù)繪制了如下統(tǒng)計(jì)圖①和圖②.

請(qǐng)根據(jù)以上信息,解答下列問題:

1)本次抽樣調(diào)查的樣本容量為____;

2)圖①中“20對(duì)應(yīng)扇形的圓心角的度數(shù)為_____°;

3)估計(jì)該校本次活動(dòng)捐款金額為15元以上(含15元)的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將拋物線M1yax2+4x向右平移3個(gè)單位,再向上平移3個(gè)單位,得到拋物線M2,直線yxM1的一個(gè)交點(diǎn)記為A,與M2的一個(gè)交點(diǎn)記為B,點(diǎn)A的橫坐標(biāo)是﹣3

1)求a的值及M2的表達(dá)式;

2)點(diǎn)C是線段AB上的一個(gè)動(dòng)點(diǎn),過點(diǎn)Cx軸的垂線,垂足為D,在CD的右側(cè)作正方形CDEF

當(dāng)點(diǎn)C的橫坐標(biāo)為2時(shí),直線yx+n恰好經(jīng)過正方形CDEF的頂點(diǎn)F,求此時(shí)n的值;

在點(diǎn)C的運(yùn)動(dòng)過程中,若直線yx+n與正方形CDEF始終沒有公共點(diǎn),求n的取值范圍(直接寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案