精英家教網 > 初中數學 > 題目詳情

【題目】把順序連結四邊形各邊中點所得的四邊形叫中點四邊形。

1)任意四邊形的中點四邊形是什么形狀?為什么?

2)符合什么條件的四邊形,它的中點四邊形是菱形?

3)符合什么條件的四邊形,它的中點四邊形是矩形?

【答案】1)平行四邊形;理由見解析;(2)當原四邊形的對角線相等時,它的中點四邊形是菱形;(3)當原四邊形的對角線互相垂直時,它的中點四邊形是矩形.

【解析】

1)連接BD、由點EH分別為邊AB、AD的中點,同理知FGBD、FG=BD,據此可得EH=FGEHFG,即可得證;

2)同理根據對角線相等,可知鄰邊相等,中點四邊形是菱形;

3)同理根據對角線互相垂直,可知有一個角是直角,中點四邊形是矩形.

1)任意四邊形的中點四邊形是平行四邊形,理由是:

如圖1,連接BD,

∵點E、H分別為邊ABAD的中點,

EHBDEH=BD,

∵點F、G分別為BCDC的中點,

FGBD、FG=BD,

EH=FGEHFG,

∴中點四邊形EFGH是平行四邊形;

2)當原四邊形的對角線相等時,它的中點四邊形是菱形;

證明:與(1)同理:EH=FG=BD=AC=EF=HG,得它的中點四邊形是菱形;

3)當原四邊形的對角線互相垂直時,它的中點四邊形是矩形;

證明:與(1)同理:EHFGBD,ACEFHG,

ACBD,

EHFG分別與EF、HG垂直,

∴得它的中點四邊形是矩形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:如圖,在四邊形ABCD中,點G在邊BC的延長線上,CE平分∠BCD,CF平分∠GCD,EF∥BCCD于點O.

(1)求證:OE=OF;

(2)若點OCD的中點,求證:四邊形DECF是矩形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】中,,將繞點A按順時針方向旋轉得到旋轉角為,點B,點C的對應點分別為點D,點E,過點D作直線AB的垂線,垂足為F,過點E作直線AC的垂線,垂足為P,當時,點P與點C之間的距離是________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某單位計劃在暑假陰間組織員工到某地旅游,參加旅游的人數估計為10~25人,甲、乙兩家旅行社的服務質量相同,且報價都是每人200.經過協(xié)商,甲旅行社表示可給予每位游客七折優(yōu)惠;乙旅行社表示可先免去一位游客的費用,其余游客七五折優(yōu)惠.設該單位參加旅游的人數是x.選擇甲旅行社時,所需費用為元,選擇乙旅行社時,所需費用為.

1)寫出甲旅行社收費(元)與參加旅游的人數x(人)之間的關系式.

2)寫出乙旅行社收費(元)與參加旅游的人數x(人)之間的關系式.

3)該單位選擇哪一家旅行社支付的旅游費用較少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在某次海上軍事學習期間,我軍為確保OBC海域內的安全,特派遣三艘軍艦分別在O、B、C處監(jiān)控OBC海域,在雷達顯示圖上,軍艦B在軍艦O的正東方向80海里處,軍艦C在軍艦B的正北方向60海里處,三艘軍艦上裝載有相同的探測雷達,雷達的有效探測范圍是半徑為r的圓形區(qū)域.(只考慮在海平面上的探測)

(1)若三艘軍艦要對OBC海域進行無盲點監(jiān)控,則雷達的有效探測半徑r至少為多少海里?

(2)現(xiàn)有一艘敵艦A從東部接近OBC海域,在某一時刻軍艦B測得A位于北偏東60°方向上,同時軍艦C測得A位于南偏東30°方向上,求此時敵艦A離OBC海域的最短距離為多少海里?

(3)若敵艦A沿最短距離的路線以20海里/小時的速度靠近OBC海域,我軍軍艦B沿北偏東15°的方向行進攔截,問B軍艦速度至少為多少才能在此方向上攔截到敵艦A?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD的頂點A在x軸的正半軸上,頂點D在y軸的正半軸上,點B、點C在第一象限,sin∠OAD=,線段AD、AB的長分別是方程x2﹣11x+24=0的兩根(AD>AB).

(1)求點B的坐標;

(2)求直線AB的解析式;

(3)在直線AB上是否存在點M,使以點C、點B、點M為頂點的三角形與△OAD相似?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】移動支付快捷高效,中國移動支付在世界處于領先水平,為了解人們平時最喜歡用哪種,移動支付支付方式,為此在某步行街,使用某app,軟件對使用移動支付的行人進行隨機抽樣調查,設置了四個選項,支付寶,微信,銀行卡,其他移動支付(每人只選一項),以下是根據調查結果分別整理的不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.

請你根據下列統(tǒng)計圖提供的信息,完成下列問題.

(1)這次調查的樣本容量是  ;

(2)請補全條形統(tǒng)計圖;

(3)求在此次調查中表示使用微信支付的扇形所對的圓心角的度數.

(4)若某天該步行街人流量為10萬人,其中40%的人購物并選擇移動支付,請你依據此次調查獲得的信息,估計一下當天使用銀行卡支付的人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABOC的頂點O在坐標原點,邊BOx軸的負半軸上,,頂點C的坐標為,x反比例函數的圖象與菱形對角線AO交于點D,連接BD,當軸時,k的值是______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學決定在本校學生中開展足球、籃球、羽毛球、乒乓球四種活動,為了了解學生對這四種活動的喜愛情況,學校隨機調查了該校m名學生,看他們喜愛哪一種活動(每名學生必選一種且只能從這四種活動中選擇一種),現(xiàn)將調查的結果繪制成如下不完整的統(tǒng)計圖.請你根據圖中的信息,解答下列問題.

(1)m=   ,n=   

(2)請補全圖中的條形圖;

(3)扇形統(tǒng)計圖中,足球部分的圓心角是   度;

(4)根據抽樣調查的結果,請估算全校1800名學生中,大約有多少人喜愛踢足球.

查看答案和解析>>

同步練習冊答案