【題目】已知,如圖,在矩形ABCD,AB=4,BC=6,點(diǎn)E為線段AB上一動(dòng)點(diǎn)(不與點(diǎn)A. 點(diǎn)B重合),先將矩形ABCD沿CE折疊,使點(diǎn)B落在點(diǎn)F處,CFAD于點(diǎn)H.

(1)求證:△AEG∽△DHC

(2)若折疊過程中,CFAD的交點(diǎn)H恰好是AD的中點(diǎn)時(shí),求tanBEC的值;

(3)若折疊后,點(diǎn)B的對(duì)應(yīng)F落在矩形ABCD的對(duì)稱軸上,求此時(shí)AE的長.

【答案】1)見解析;(2)3 (3).

【解析】

1)根據(jù)矩形的性質(zhì)得到CD=AB=4AD=BC=6,∠A=B=D=90°,根據(jù)折疊的性質(zhì)得到∠F=B=90°,根據(jù)余角的性質(zhì)得到∠AEG=DHC,于是得到結(jié)論;

2)由點(diǎn)HAD的中點(diǎn),得到AH=DH=3,根據(jù)相似三角形的性質(zhì)得到GH=,得到AG=AD-GH-DH=,BE=2,根據(jù)三角函數(shù)的定義即可得到結(jié)論;

3)分兩種情況考慮:F在橫對(duì)稱軸上與F在豎對(duì)稱軸上,分別求出BF的長即可.

(1)∵在矩形ABCD中,AB=4,BC=6

CD=AB=4,AD=BC=6,A=B=D=90°,

∵將矩形ABCD沿CE折疊,使點(diǎn)B落在點(diǎn)F處,

∴∠F=B=90°,

∵∠AGE=FGH,∠FHG=DHC,

∵∠FGH+FHG=90°

∴∠AGE+DHC=90°,

∵∠AEG+AGE=90°,

∴∠AEG=DHC

∴△AEG∽△DHC;

(2)∵點(diǎn)HAD的中點(diǎn),

AH=DH=3,

CD=4,

CH=5,FH=1,

∵∠F=D=90°,∠FHG=DHC

∴△FHG∽△DHC,

,

GH=,

AG=ADGHDH=,

∵△AEG∽△DHC,

,

AE=1

BE=2,

tanBEC==3,

(3)當(dāng)F在橫對(duì)稱軸MN,如圖2所示,此時(shí)CN=CD=2CF=BC=6,

FN=,

MF=

由折疊得,EF=BE,EM=2BE

,

BE=,

AE=

當(dāng)F在豎對(duì)稱軸MN上時(shí),如圖3所示,此時(shí)ABMNCD,

∴∠BEC=FOE,

∵∠BEC=FEC,

∴∠FEC=FOE

EF=OF,

由折疊的性質(zhì)得,BE=EF,EFC=B=90°,

BN=CN,

OC=OE,

FO=OE,

∴△EFO是等邊三角形,

∴∠FEC=60°,

∴∠BEC=60°,

BE=BC=

AE=.

綜上所述,點(diǎn)B的對(duì)應(yīng)F落在矩形ABCD的對(duì)稱軸上,此時(shí)AE的長是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,四邊形OABC如圖所示,點(diǎn)Ax軸負(fù)半軸上,BCAO(點(diǎn)B位于點(diǎn)C左側(cè)),邊BA、CO的延長線交于第三象限的點(diǎn)D,且DB=DC,若點(diǎn)B的橫坐標(biāo)是﹣4,ADBD1:3

1)求點(diǎn)A的坐標(biāo);

2)連接OB,若OBC是等腰三角形,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了提升菜籃子工程質(zhì)量,計(jì)劃用大、中型車輛共輛調(diào)撥不超過噸蔬菜和噸肉制品補(bǔ)充當(dāng)?shù)厥袌觯阎惠v大型車可運(yùn)蔬菜噸和肉制品噸;一輛中型車可運(yùn)蔬菜噸和肉制品噸.

1)符合題意的運(yùn)輸方案有幾種?請你幫助設(shè)計(jì)出來;

2)若一輛大型車的運(yùn)費(fèi)是元,一輛中型車的運(yùn)費(fèi)為元,試說明中哪種運(yùn)輸方案費(fèi)用最低?最低費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將兩張長為9,寬為3的矩形紙條交叉放置,其中重疊部分是一個(gè)菱形,則重疊部分菱形周長最小值是__________,周長最大值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列條件求二次函數(shù)解析式

1)已知一個(gè)二次函數(shù)的圖象經(jīng)過了點(diǎn)A0,﹣1),B1,0),C(﹣1,2);

2)已知拋物線頂點(diǎn)P(﹣1,﹣8),且過點(diǎn)A0,﹣6);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)(是常數(shù),)在同一平面直角坐標(biāo)系的圖象可能是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形為正方形,上一點(diǎn),將正方形折疊,使點(diǎn)與點(diǎn)重合,折痕為,相交于點(diǎn),若,.求:

(1)的面積;

(2)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A在反比例函數(shù)y x0)的圖象上,過點(diǎn)AACx軸,垂足是C,一次函數(shù)y kxb的圖象經(jīng)過點(diǎn)A,與y軸的正半軸交于點(diǎn)BAC OC 2OB.

1)求點(diǎn)A的坐標(biāo);

2)求一次函數(shù)的表達(dá)式,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格上有ABCDEF

1)這兩個(gè)三角形相似嗎?為什么?

2)請直接寫出∠A的度數(shù)   ;

3)在上邊的網(wǎng)格內(nèi)再畫一個(gè)三角形,使它與ABC相似,并求出其相似比.

查看答案和解析>>

同步練習(xí)冊答案