【題目】如圖,已知在ABC中,點DBC邊上一點(不與點B,點C重合),連結AD,點E、點F分別為ABAC上的點,且EFBC,交AD于點G,連結BG,并延長BGAC于點H.已知=2,①若ADBC邊上的中線,的值為;②若BHAC,當BC2CD時,2sinDAC.則(

A. ①正確;②不正確B. ①正確;②正確

C. ①不正確;②正確D. ①不正確;②正確

【答案】A

【解析】

根據(jù)相似三角形的判定與性質易證其正確;利用相似三角形的判定與性質得到,因為BC2CD,所以,即BH3GH,再根據(jù)BH⊥AC,得到sin∠DAC=,利用等量代換即可得解.

解:EF∥BC,

∴△AEG∽△ABD

=2,

,

同理易證△GHF∽△BHC

DBC中點,

,

=,故正確;

同理∵=2,

,即AD=AG

BC2CD,即EF2GF,

EGGF,

,即BH3GH,

=2,

又∵BH⊥AC,

sin∠DAC=,

2sin∠DAC,故不正確.

故選A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】襄陽市精準扶貧工作已進入攻堅階段.貧困戶張大爺在某單位的幫扶下,把一片坡地改造后種植了優(yōu)質水果藍莓,今年正式上市銷售.在銷售的30天中,第一天賣出20千克,為了擴大銷量,采取了降價措施,以后每天比前一天多賣出4千克.第x天的售價為y/千克,y關于x的函數(shù)解析式為 且第12天的售價為32/千克,第26天的售價為25/千克.已知種植銷售藍莓的成木是18/千克,每天的利潤是W元(利潤=銷售收入﹣成本).

(1)m=   ,n=   

(2)求銷售藍莓第幾天時,當天的利潤最大?最大利潤是多少?

(3)在銷售藍莓的30天中,當天利潤不低于870元的共有多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校準備在各班設立圖書角以豐富同學們的課余文化生話.為了更合理的搭配各類書籍,學校團委以“我最喜愛的書籍”為主題,對學生最喜愛的一種書籍類型進行隨機抽樣調查,收集整理數(shù)據(jù)后,繪制出以下兩幅未完成的統(tǒng)計圖,請根據(jù)圖和圖提供的信息,解答下列問題:

1)在這次抽樣調查中,一共調查了多少名學生?

2)請把折線統(tǒng)計圖補充完整;

3)學校若在喜愛藝術、文學、科普、體育四類中任意選取兩類建立興趣小姐.請用列表或畫樹狀圖的方法求出恰好選中體育和科普兩類的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知的直徑,上一點,,垂足為點,是弧的中點,與弦交于點.

1)如果是弧的中點,求的值;

2)如果的直徑,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校七年級一班和二班各派出10名學生參加一分鐘跳繩比賽,成績如下表:

跳繩成績(個)

132

133

134

135

136

137

一班人數(shù)(人)

1

0

1

5

2

1

二班人數(shù)(人)

0

1

4

1

2

2

1)兩個班級跳繩比賽成績的眾數(shù)、中位數(shù)、平均數(shù)、方差如下表:

眾數(shù)

中位數(shù)

平均數(shù)

方差

一班

a

135

135

c

二班

134

b

135

1.8

表中數(shù)據(jù)a ,b ,c ;

2)請用所學的統(tǒng)計知識,從兩個角度比較兩個班跳繩比賽的成績.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①拋物線yax2+bx+3a≠0)與x軸,y軸分別交于點A(﹣1,0),B30),點C三點.

1)試求拋物線的解析式;

2)點D2,m)在第一象限的拋物線上,連接BC,BD.試問,在對稱軸左側的拋物線上是否存在一點P,滿足∠PBC=∠DBC?如果存在,請求出點P點的坐標;如果不存在,請說明理由;

3)點N在拋物線的對稱軸上,點M在拋物線上,當以M、NB、C為頂點的四邊形是平行四邊形時,請直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】動點Am+2,3m+4)在直線l上,點Bb,0)在x軸上,如果以B為圓心,半徑為1的圓與直線l有交點,則b的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線軸交于點,與軸交于點.

1)求拋物線的表達式;

2)點是拋物線上第二象限內的點,連接,設的面積為,當取最大值時,求點的坐標;

3)作射線,將射線點順時針旋轉交拋物線于另一點,在射線上是否存在一點,使的周長最小.若存在,求出的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等邊的邊長為,等邊的邊長為,把放在中,使重合,點邊上,如圖所示,此時點中點,在內部將按下列方式旋轉:繞點順時針旋轉,使點與點重合,完成第次操作,此時點中點,旋轉了__________;再繞點順時針旋轉,使點與點重合,完成第次操作;……這樣依次繞的某個頂點連續(xù)旋轉下去,第次操作完成時,_____________.

查看答案和解析>>

同步練習冊答案