(2013•秀洲區(qū)二模)如圖,AB是⊙O的直徑,CD是⊙O的弦,若∠BAD=48°,則∠DCA的大小為( 。
分析:連接BD,則可得∠ADB=90°,在△ABD中求出∠ABD,再由圓周角定理可得出∠DCA.
解答:解:連接BD,

∵AB是⊙O的直徑,
∴∠ADB=90°,
∴∠ABD=90°-∠BAD=42°,
∴∠DCA=∠ABD=42°.
故選B.
點評:本題考查了圓周角定理的知識,解答本題的關(guān)鍵是熟練記憶圓周角定理及其推論,并能靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•秀洲區(qū)二模)下面各數(shù)中,可以用來證明命題“任何偶數(shù)都是8的倍數(shù)”是假命題的反例是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•秀洲區(qū)二模)下列函數(shù)中:①y=-3x;②y=2x-1;③y=-
2
x
;④y=-x2+2x+3(x>2),y的值隨著x的增大而增大的函數(shù)個數(shù)有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•秀洲區(qū)二模)已知拋物線y=mx2+nx+p頂點的橫坐標是2,與y軸交于點(0,-3).則代數(shù)式8m+2n-p的值等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•秀洲區(qū)二模)平面直角坐標系中,正方形ABCD的位置如圖所示,點A的坐標為(1,0),點D的坐標為(0,2).延長CB交x軸于點A1,作正方形A1B1C1C;延長C1B1交x軸于點A2,作正方形A2B2C2C1…按這樣的規(guī)律進行下去,正方形A2013B2013C2013C2012的面積為( 。

查看答案和解析>>

同步練習(xí)冊答案