【題目】在△ABC和△DCE中,CA=CBCD=CE,∠CAB= CED=α.

(1)如圖1,將AD、EB延長,延長線相交于點0.

①求證:BE= AD;

②用含α的式子表示∠AOB的度數(shù)(直接寫出結果);

(2)如圖2,當α=45°時,連接BD、AE,CMAEM點,延長MCBD交于點N.求證:NBD的中點.

:(2)問的解答過程無需注明理由.

【答案】1)①見解析∠BOA=2α2)見解析

【解析】

1)①根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和得到∠ACB=∠DCE,根據(jù)全等三角形的性質(zhì)即可得到結論;

②根據(jù)全等三角形的性質(zhì)得到∠CAD=CBE=α+∠BAO,根據(jù)三角形的內(nèi)角和即可得到結論;

2)如圖2,作BPMN的延長線上于點P,作DQMNQ,根據(jù)全等三角形的性質(zhì)得到MC=BP,同理CM=DQ,等量替換得到DQ=BP,根據(jù)全等三角形的性質(zhì)即可得到結論.

1)①∵CA=CB,CD=CE,CAB=CED=α,

∴∠ACB=180°-2α,∠DCE=180°-2α,

∠ACB=∠DCE

∠ACB-∠DCB=∠DCE-∠DCB

∠ACD=∠BCE

△ACD△BCE

△ACD△BCE

BE=AD

∵△ACD△BCE

∠CAD=∠CBE=α+∠BAO,

∵∠ABE=BOA+BAO

∠CBE+α=∠BOA+BAO

∴∠BAO+α+α=∠BOA+BAO

∴∠BOA=2α

2)如圖2,作BPMN的延長線上于點P,作DQMNQ,

∠BCP+∠BCA=∠CAM+∠AMC

∴∠BCA=AMC

∴∠BCP=∠CAM

△CBP△ACM

△CBP△ACMAAS

MC=BP.

同理△CDQ△ECM

CM=DQ

∴DQ=BP

△BPN△DQN

△BPN△DQN

BN=ND,

NBD中點.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AD△ABC外角的平分線,已知∠BAC=∠ACD

1)求證:△ABC≌△CDA;

2)若∠B=60°,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca≠0)的大致圖象如圖,關于該二次函數(shù),下列說法錯誤的是( )

A. 函數(shù)有最小值

B. 對稱軸是直線x=

C. x,yx的增大而減小

D. ﹣1x2時,y0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,OA=OB=OC=6,過點A的直線ADBC于點D,y軸與點G,ABD的面積為△ABC面積的.

(1)求點D的坐標;

(2)過點CCEAD,交AB交于F,垂足為E.

①求證:OF=OG

②求點F的坐標。

(3)(2)的條件下,在第一象限內(nèi)是否存在點P,使△CFP為等腰直角三角形?若存在,直接寫出點P坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC和△DCE中,CA=CB,CD=CE,∠CAB= CED=α.

(1)如圖1,將AD、EB延長,延長線相交于點0.

①求證:BE= AD;

②用含α的式子表示∠AOB的度數(shù)(直接寫出結果);

(2)如圖2,當α=45°時,連接BD、AE,CMAEM點,延長MCBD交于點N.求證:NBD的中點.

:(2)問的解答過程無需注明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是一塊破損的木板.

(1)請你設計一種方案,檢驗木板的兩條直線邊緣 AB、CD 是否平行;

(2)AB∥CD,連接 BC,過點 A AM⊥BC M,垂足為 M,畫出圖形,并寫出∠BCD 與∠BAM 的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=-2x與直線ykxb相交于點A(a,2),并且直線ykxb經(jīng)過x軸上點B(2,0)

(1)求直線ykxb的解析式;

(2)求兩條直線與y軸圍成的三角形面積;

(3)直接寫出不等式(k2)xb≥0的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 1,AM∥CN,點 B 為平面內(nèi)一點,AB⊥BC B,過 B BD⊥ AM.

(1)求證:∠ABD=∠C;

(2)如圖 2,在(1)問的條件下,分別作∠ABD、∠DBC 的平分線交 DM 于 E、F,若∠BFC=1.5∠ABF,∠FCB=2.5∠BCN,

①求證:∠ABF=∠AFB;

②求∠CBE 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸相交于A3,0、B1,0兩點,與y軸相交于點C0,3,點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D

1求D點坐標;

2求二次函數(shù)的解析式;

3根據(jù)圖象直接寫出使一次函數(shù)值小于二次函數(shù)值的x的取值范圍

查看答案和解析>>

同步練習冊答案