【題目】(1)解分式方程;
(2)已知(x2+px+q)(x2﹣3x+2)中,不含x3項(xiàng)和x項(xiàng),求p,q的值.
【答案】(1)原方程無(wú)解;(2)p=3,q=2.
【解析】
(1)先去分母,把方程化為整式方程x(x+2)-(x-1)(x+2)=3,再解整式方程,然后進(jìn)行檢驗(yàn)確定原方程的解;
(2)先計(jì)算多項(xiàng)式乘多項(xiàng)式,再根據(jù)題意得到p-3=0,2p-3q=0,然后解關(guān)于p、q的方程組即可.
解:(1)去分母得x(x+2)﹣(x﹣1)(x+2)=3,
解得x=1,
檢驗(yàn):當(dāng)x=1時(shí),(x﹣1)(x+2)=0,則x=1為原方程的增根,
所以原方程無(wú)解;
(2)(x2+px+q)(x2﹣3x+2)=x4﹣3x3+2x2+px3﹣3px2+2px+qx2﹣3qx+2q=x4+(p﹣3)x3+(q+2﹣3p)x2+(2p﹣3q)x+2q,
∵多項(xiàng)式不含x3項(xiàng)和x項(xiàng),
∴p﹣3=0,2p﹣3q=0,
∴p=3,q=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(1,1),B(4,2),C(3,4).
(1)請(qǐng)畫(huà)出△ABC向左平移5個(gè)單位長(zhǎng)度后得到的△A1B1C1;
A、B、C向左平移5個(gè)單位后的坐標(biāo)分別為(-4,1),(-1,2),(-2,4),連接這三個(gè)點(diǎn),得△A1B1C1;
(2)請(qǐng)畫(huà)出△ABC關(guān)于原點(diǎn)對(duì)稱的△A2B2C2;
(3)在x軸上求作一點(diǎn)P,使△PAB周長(zhǎng)最小,請(qǐng)畫(huà)出△PAB,并直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y1=kx+b和y2=﹣4x+a的圖象如圖所示,且A(0,4),C(﹣2,0).
(1)由圖可知,不等式kx+b>0的解集是 ;
(2)若不等式kx+b>﹣4x+a的解集是x>1.
①求點(diǎn)B的坐標(biāo);
②求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“端午節(jié)”是我國(guó)的傳統(tǒng)佳節(jié),歷來(lái)有吃“粽子”的習(xí)俗.我市某食品加工廠,擁有A、B兩條粽子加工生產(chǎn)線.原計(jì)劃A生產(chǎn)線每小時(shí)加工粽子個(gè)數(shù)是B生產(chǎn)線每小時(shí)加工粽子個(gè)數(shù)的.
(1)若A生產(chǎn)線加工4000個(gè)粽子所用時(shí)間與B生產(chǎn)線加工4000個(gè)粽子所用時(shí)間之和恰好為18小時(shí),則原計(jì)劃A、B生產(chǎn)線每小時(shí)加工粽子各是多少個(gè)?
(2)在(1)的條件下,原計(jì)劃A、B生產(chǎn)線每天均加工a小時(shí),由于受其他原因影響,在實(shí)際加工過(guò)程中,A生產(chǎn)線每小時(shí)比原計(jì)劃少加工100個(gè),B生產(chǎn)線每小時(shí)比原計(jì)劃少加工50個(gè).為了盡快將粽子投放到市場(chǎng),A生產(chǎn)線每天比原計(jì)劃多加工3小時(shí),B生產(chǎn)線每天比原計(jì)劃多加工a小時(shí).這樣每天加工的粽子不少于6300個(gè),求a的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直線AB交CD于點(diǎn)O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=4:1,則∠AOF等于( 。
A. 130°B. 120°C. 110°D. 100°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三孔橋橫截面的三個(gè)孔都呈拋物線形,兩小孔形狀、大小都相同,正常水位時(shí),大孔水面寬度AB=20m,頂點(diǎn)M距水面6m(即MO=6m),小孔頂點(diǎn)N距水面4.5m(即NC=4.5m),當(dāng)水位上漲剛好淹沒(méi)小孔時(shí),借助圖中的直角坐標(biāo)系,求此時(shí)大孔的水面寬度EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)P(x,y)的坐標(biāo)滿足方程組
(1)求點(diǎn)P的坐標(biāo)(用含m,n的式子表示);
(2)若點(diǎn)P在第四象限,且符合要求的整數(shù)m只有兩個(gè),求n的取值范圍;
(3)若點(diǎn)P到x軸的距離為5,到y軸的距離為4,求m,n的值(直接寫(xiě)出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某住宅小區(qū)在施工過(guò)程中留下了一塊空地(圖中的四邊形ABCD),經(jīng)測(cè)量,在四邊形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.
(1)△ACD是直角三角形嗎?為什么?
(2)小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米80元,試問(wèn)鋪滿這塊空地共需花費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△BAD是由△BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.
(1)求證:△BDE≌△BCE;
(2)試判斷四邊形ABED的形狀,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com