【題目】已知:如圖,△ABC中,ADBCD,BE是三角形的角平分線,交ADF

1)若∠ABC=40°, 求∠AFE的度數(shù).

2)若∠BAC是直角,請猜想:△AFE的形狀,并寫出證明.

【答案】1)∠AFE=70°;(2)等腰三角形,證明見解析.

【解析】

1)根據(jù)角平分線的定義求出∠DBF,再根據(jù)三角形內角和定理求出∠BFD即可解決問題.

2)結論:AEF是等腰三角形.想辦法證明∠AEF=AFE即可.

1)∵ADBC,

∴∠ADB=90°

∵∠ABC=40°,BE平分∠ABC,

∴∠DBF=ABC=20°

∴∠BFD=90°-20°=70°

∴∠AFE=BFD=70°

2)結論:△AEF是等腰三角形.

理由:∵∠BAE=ADB=90°,

∴∠AEF+ABE=90°,∠BFD+FBD=90°

∵∠ABE=DBF,

∴∠AEF=BFD,

∵∠BFD=AFE,

∴∠AFE=AEF

AE=AF,

∴△AEF是等腰三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知平行四邊形OACB的頂點OA、B的坐標分別是(0,0)、(0a),(b0),且ab滿足

1)如圖1,求點C的坐標;

2)如圖2,點P為邊OB上一動點,作等腰Rt△APD,且∠APD=90°.當點PO運動到點B的過程中,求點D運動路程的長度;

3)如圖3,在(2)的條件下,作等腰Rt△BED,且∠DBE=90°,再作等腰Rt△ECF,且∠ECF=90°,直線FE分別交ACOB于點M、N,求證:FM=EN

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以ABC的BC邊上一點O為圓心的圓,經(jīng)過A,B兩點,且與BC邊交于點E,D為BE的下半圓弧的中點,連接AD交BC于F,若AC=FC.

(1)求證:AC是O的切線:

(2)若BF=8,DF=,求O的半徑r.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在以點O為圓心的兩個同心圓中,大圓的弦AB交小圓于點C,D(如圖).

1)求證:AC=BD;

2)若大圓的半徑R=10,小圓的半徑r=8,且圓O到直線AB的距離為6,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為迎接11.1—11.4義烏市森博會,某商家計劃從廠家采購A,B兩種產(chǎn)品共20件,產(chǎn)品的采購單價(元/件)是采購數(shù)量(件)的一次函數(shù).下表提供了部分采購數(shù)據(jù).

(1)設A產(chǎn)品的采購數(shù)量為x(件),采購單價為y1(元/件),求y1x的關系式;

(2)經(jīng)商家與廠家協(xié)商,采購A產(chǎn)品的數(shù)量不少于B產(chǎn)品數(shù)量的,且A產(chǎn)品采購單價不低于1200元.求該商家共有幾種進貨方案;

(3)該商家分別以1760/件和1700/件的銷售單價售出A,B兩種產(chǎn)品,且全部售完.在(2)的條件下,求采購A種產(chǎn)品多少件時總利潤最大,并求最大利潤.

采購數(shù)量(件)

1

2

A產(chǎn)品單價(元/件)

1480

1460

B產(chǎn)品單價(元/件)

1290

1280

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠CAB=DAB下列條件中不能使△ABC≌△ABD的是( )

A. C=D B. ABC=ABD C. AC=AD D. BC=BD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某小區(qū)開展了“節(jié)約用水為環(huán)保做貢獻”的活動,為了解居民用水情況,在小區(qū)隨機抽查了10戶家庭的月用水量,結果如下表

月用水量(噸)

8

9

10

戶數(shù)

2

6

2

則關于這10戶家庭的月用水量,下列說法錯誤的是 ( )

A. 方差是4 B. 極差2 C. 平均數(shù)是9 D. 眾數(shù)是9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:關于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.

(1)求二次函數(shù)的表達式;

(2)y軸上是否存在一點P,使PBC為等腰三角形.若存在,請求出點P的坐標;

(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M 達點B時,點M、N同時停止運動,問點M、N運動到何處時,MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a=2016×2018-2016×2017, b=2015×2016-2013×2017,,則ab,c的大小關系是( )

A. abc B. acb C. bac D. bca

查看答案和解析>>

同步練習冊答案