【題目】如圖1,在平面直角坐標(biāo)系中,△ABC的頂點A,C分別是直線y=﹣x+4與坐標(biāo)軸的交點,點B的坐標(biāo)為(﹣2,0),點D是邊AC上的一點,DE⊥BC于點E,點F在邊AB上,且D,F兩點關(guān)于y軸上的某點成中心對稱,連結(jié)DF,EF.設(shè)點D的橫坐標(biāo)為m,EF2為l,請?zhí)骄浚?/span>
①線段EF長度是否有最小值.
②△BEF能否成為直角三角形.
小明嘗試用“觀察﹣猜想﹣驗證﹣應(yīng)用”的方法進行探究,請你一起來解決問題.
(1)小明利用“幾何畫板”軟件進行觀察,測量,得到l隨m變化的一組對應(yīng)值,并在平面直角坐標(biāo)系中以各對應(yīng)值為坐標(biāo)描點(如圖2).請你在圖2中連線,觀察圖象特征并猜想l與m可能滿足的函數(shù)類別.
(2)小明結(jié)合圖1,發(fā)現(xiàn)應(yīng)用三角形和函數(shù)知識能驗證(1)中的猜想,請你求出l關(guān)于m的函數(shù)表達式及自變量的取值范圍,并求出線段EF長度的最小值.
(3)小明通過觀察,推理,發(fā)現(xiàn)△BEF能成為直角三角形,請你求出當(dāng)△BEF為直角三角形時m的值.
【答案】(1)連線見解析,二次函數(shù);(2);(3)m=0或m=
【解析】
(1)根據(jù)描點法畫圖即可;
(2)過點F,D分別作FG,DH垂直于y軸,垂足分別為G,H,證明Rt△FGK≌Rt△DHK(AAS),由全等三角形的性質(zhì)得出FG=DH,可求出F(﹣m,﹣2m+4),根據(jù)勾股定理得出l=EF2=8m2﹣16m+16=8(m﹣1)2+8,由二次函數(shù)的性質(zhì)可得出答案;
(3)分三種不同情況,根據(jù)直角三角形的性質(zhì)得出m的方程,解方程求出m的值,則可求出答案.
解:(1)用描點法畫出圖形如圖1,由圖象可知函數(shù)類別為二次函數(shù).
(2)如圖2,過點F,D分別作FG,DH垂直于y軸,垂足分別為G,H,
則∠FGK=∠DHK=90°,
記FD交y軸于點K,
∵D點與F點關(guān)于y軸上的K點成中心對稱,
∴KF=KD,
∵∠FKG=∠DKH,
∴Rt△FGK≌Rt△DHK(AAS),
∴FG=DH,
∵直線AC的解析式為y=﹣x+4,
∴x=0時,y=4,
∴A(0,4),
又∵B(﹣2,0),
設(shè)直線AB的解析式為y=kx+b,
∴,
解得,
∴直線AB的解析式為y=2x+4,
過點F作FR⊥x軸于點R,
∵D點的橫坐標(biāo)為m,
∴F(﹣m,﹣2m+4),
∴ER=2m,FR=﹣2m+4,
∵EF2=FR2+ER2,
∴l=EF2=8m2﹣16m+16=8(m﹣1)2+8,
令﹣+4=0,得x=,
∴0≤m≤.
∴當(dāng)m=1時,l的最小值為8,
∴EF的最小值為2.
(3)①∠FBE為定角,不可能為直角.
②∠BEF=90°時,E點與O點重合,D點與A點,F點重合,此時m=0.
③如圖3,∠BFE=90°時,有BF2+EF2=BE2.
由(2)得EF2=8m2﹣16m+16,
又∵BR=﹣m+2,FR=﹣2m+4,
∴BF2=BR2+FR2=(﹣m+2)2+(﹣2m+4)2=5m2﹣20m+20,
又∵BE2=(m+2)2,
∴(5m2﹣20m+8)+(8m2﹣16m+16)2=(m+2)2,
化簡得,3m2﹣10m+8=0,
解得m1=,m2=2(不合題意,舍去),
∴m=.
綜合以上可得,當(dāng)△BEF為直角三角形時,m=0或m=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一艘輪船向正東方向航行,在A處測得燈塔P在A的北偏東60°方向,航行40海里到達B處,此時測得燈塔P在B的北偏東15°方向.
(1)求燈塔P到輪船航線的距離PD;(結(jié)果保留根號)
(2)當(dāng)輪船從B處繼續(xù)向東航行時,一艘快艇從燈塔P處同時前往D處,盡管快艇速度是輪船速度的2倍,但快艇還是比輪船晚15分鐘到達D處,求輪船每小時航行多少海里.(結(jié)果精確到1海里,參考數(shù)據(jù)≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為檢測師生體溫,在校門安裝了某型號測溫門.如圖為該測溫門截面示意圖,已知測溫門AD的頂部A處距地面高為2.2m,為了解自己的有效測溫區(qū)間.身高1.6m的小聰做了如下實驗:當(dāng)他在地面N處時測溫門開始顯示額頭溫度,此時在額頭B處測得A的仰角為18°;在地面M處時,測溫門停止顯示額頭溫度,此時在額頭C處測得A的仰角為60°.求小聰在地面的有效測溫區(qū)間MN的長度.(額頭到地面的距離以身高計,計算精確到0.1m,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2,當(dāng)a≤x≤b時m≤y≤n,則下列說法正確的是( )
A.當(dāng)n﹣m=1時,b﹣a有最小值
B.當(dāng)n﹣m=1時,b﹣a有最大值
C.當(dāng)b﹣a=1時,n﹣m無最小值
D.當(dāng)b﹣a=1時,n﹣m有最大值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一把矩形直尺ABCD和一塊含30°角的三角板EFG擺放在平面直角坐標(biāo)系中,AB在x軸上,點G與點A重合,點F在AD上,三角板的直角邊EF交BC于點M,反比例函數(shù)y=(x>0)的圖象恰好經(jīng)過點F,M.若直尺的寬CD=3,三角板的斜邊FG=,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,以BC為直徑的圓分別交邊AC、AB于D、E兩點,連接BD、DE.若BD平分∠ABC,則下列結(jié)論不一定成立的是( 。
A. BD⊥AC B. AC2=2ABAE C. △ADE是等腰三角形 D. BC=2AD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線(a≠0)的對稱軸為直線,且拋物線經(jīng)過A(1,0),C(0,3)兩點,與軸交于點B.
(1)若直線經(jīng)過B,C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸上找一點M,使MA+MC的值最小,求點M的坐標(biāo);
(3)設(shè)P為拋物線的對稱軸上的一個動點,求使ΔBPC為直角三角形的點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點A(8,1),B(0,3),反比例函數(shù)(x>0)的圖象經(jīng)過點A,動直線x=t(0<t<8)與反比例函數(shù)的圖象交于點M,與直線AB交于點N.
(1)求k的值;
(2)求△BMN面積的最大值;
(3)若MA⊥AB,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某年級共有150名女生,為了解該校女生實心球成績(單位:米)和仰臥起坐(單位:個)的情況,從中隨機抽取30名女生進行測試,獲得了她們的相關(guān)成績,并對數(shù)據(jù)進行整理、描述和分析,下面給出了部分信息.
.實心球成績的頻數(shù)分布表如下:
分組 | 6.2≤<6.6 | 6.6≤<7.0 | 7.0≤<7.4 | 7.4≤<7.8 | 7.8≤<8.2 | 8.2≤<8.6 |
頻數(shù) | 2 | 10 | 6 | 2 | 1 |
.實心球成績在7.0≤<7.4.這組的是:
7.0 | 7.0 | 7.0 | 7.1 | 7.1 | 7.2 | 7.2 | 7.3 | 7.3 |
.一分鐘仰臥起坐成績?nèi)鐖D所示:
根據(jù)以上信息,回答下列問題:
(1)①表中m的值為 ;
②抽取學(xué)生一分鐘仰臥起坐成績的中位數(shù)為 個;
(2)若實心球成績達到7.2米及以上,成績記為優(yōu)秀,請估計全年級女生成績達到優(yōu)秀的人數(shù).
(3)該年級某班體育委員將本班在這次抽樣測試中被抽取的8名女生的兩項成績的數(shù)據(jù)抄錄如下:
女生代碼 | A | B | C | D | E | F | G | H |
實心球 | 8.1 | 7.7 | 7.5 | 7.5 | 7.3 | 7.2 | 7.0 | 6.5 |
一分鐘仰臥起坐 | * | 42 | 47 | * | 47 | 52 | * | 49 |
其中有2名女生的一分鐘仰臥起坐成績未抄錄完整,當(dāng)老師說這8名女生恰好有4人兩項測試成績都達到了優(yōu)秀,于是體育委員推測女生E的一分鐘仰臥起坐成績達到了優(yōu)秀,你同意體育委員的說法嗎?并說明你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com