【題目】在Rt△ABC中,∠BAC=90°,過點B的直線MN∥AC,D為BC邊上一點,連接AD,作DE⊥AD交MN于點E,連接AE.
(1)如圖①,當(dāng)∠ABC=45°時,求證:AD=DE;
(2)如圖②,當(dāng)∠ABC=30°時,線段AD與DE有何數(shù)量關(guān)系?并請說明理由;
(3)當(dāng)∠ABC=α?xí)r,請直接寫出線段AD與DE的數(shù)量關(guān)系.(用含α的三角函數(shù)表示)
【答案】(1)證明見試題解析;(2)DE=AD;(3)AD=DEtanα.
【解析】
試題分析:(1)過點D作DF⊥BC,交AB于點F,得出∠BDE=∠ADF,∠EBD=∠AFD,即可得到△BDE≌△FDA,從而得到AD=DE;
(2)過點D作DG⊥BC,交AB于點G,進(jìn)而得出∠EBD=∠AGD,證出△BDE∽△GDA即可得出答案;
(3)過點D作DG⊥BC,交AB于點G,進(jìn)而得出∠EBD=∠AGD,證出△BDE∽△GDA即可得出答案.
試題解析:(1)如圖1,過點D作DF⊥BC,交AB于點F,則∠BDE+∠FDE=90°,∵DE⊥AD,∴∠FDE+∠ADF=90°,∴∠BDE=∠ADF,∵∠BAC=90°,∠ABC=45°,∴∠C=45°,∵MN∥AC,∴∠EBD=180°﹣∠C=135°,∵∠BFD=45°,DF⊥BC,∴∠BFD=45°,BD=DF,∴∠AFD=135°,∴∠EBD=∠AFD,在△BDE和△FDA中,∵∠EBD=∠AFD,BD=DF,∠BDF=∠ADF,∴△BDE≌△FDA(ASA),∴AD=DE;
(2)DE=AD,理由:
如圖2,過點D作DG⊥BC,交AB于點G,則∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,∵∠BAC=90°,∠ABC=30°,∴∠C=60°,∵MN∥AC,∴∠EBD=180°﹣∠C=120°,∵∠ABC=30°,DG⊥BC,∴∠BGD=60°,∴∠AGD=120°,∴∠EBD=∠AGD,∴△BDE∽△GDA,∴,在Rt△BDG中,=tan30°=,∴DE=AD;
(3)AD=DEtanα;理由:
如圖2,∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,∵∠EBD=90°+α,∠AGD=90°+α,∴∠EBD=∠AGD,∴△EBD∽△AGD,∴,在Rt△BDG中,=tanα,則=tanα,∴AD=DEtanα.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了節(jié)約水資源,某市準(zhǔn)備按照居民家庭年用水量實行階梯水價.水價分檔遞增,計劃使第一檔、第二檔和第三檔的水價分別覆蓋全市居民家庭的80%,15%和5%,為合理確定各檔之間的界限,隨機抽查了該市5萬戶居民家庭上一年的年用水量(單位:m3),繪制了統(tǒng)計圖.如圖所示,下面四個推斷( )
①年用水量不超過180m3的該市居民家庭按第一檔水價交費;
②年用水量超過240m3的該市居民家庭按第三檔水價交費;
③該市居民家庭年用水量的中位數(shù)在150﹣180之間;
④該市居民家庭年用水量的平均數(shù)不超過180.
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】第一次模擬試后,數(shù)學(xué)科陳老師把一班的數(shù)學(xué)成績制成如圖的統(tǒng)計圖,并給了幾個信息:①前兩組的頻率和是0.14;②第一組的頻率是0.02;③自左到右第二、三、四組的頻數(shù)比為3:9:8,然后布置學(xué)生(也請你一起)結(jié)合統(tǒng)計圖完成下列問題:
(1)全班學(xué)生是多少人?
(2)成績不少于90分為優(yōu)秀,那么全班成績的優(yōu)秀率是多少?
(3)若不少于100分可以得到A+等級,則小明得到A+的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2013年四川瀘州2分)下列各式計算正確的是【 】
A.(a7)2=a9 B.a(chǎn)7a2=a14 C.2a2+3a3=5a5 D.(ab)3=a3b3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,2,3分別以△ABC的AB和AC為邊向△ABC外作正三角形(等邊三角形)、正四邊形(正方形)、正五邊形,BE和CD相交于點O.
(1)在圖1中,求證:△ABE≌△ADC.
(2)由(1)證得△ABE≌△ADC,由此可推得在圖1中∠BOC=120°,請你探索在圖2中,∠BOC的度數(shù),并說明理由或?qū)懗鲎C明過程.
(3)填空:在上述(1)(2)的基礎(chǔ)上可得在圖3中∠BOC= (填寫度數(shù)).
(4)由此推廣到一般情形(如圖4),分別以△ABC的AB和AC為邊向△ABC外作正n邊形,BE和CD仍相交于點O,猜想得∠BOC的度數(shù)為 (用含n的式子表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com