(2002•海淀區(qū))如圖,在△ABC中,∠C=90°,P為AB上一點,且點P不與點A重合,過點P作PE⊥AB交AC邊于E點,點E不與點C重合,若AB=10,AC=8,設(shè)AP的長為x,四邊形PECB的周長為y,求y與x之間的函數(shù)關(guān)系式.

【答案】分析:四邊形PECB的周長為PE+EC+CB+BP,其中BC在直角△ABC中運用勾股定理可以求出,BP=AB-AP=10-x,另外兩條邊均可根據(jù)△AEP∽△ABC,借助于比例線段,用含有x的式子表示出來.關(guān)鍵還需求出自變量x的取值范圍,這可以令E點運行到C時,求特殊值.
解答:解:∵在△ABC中,∠C=90°AB=10,AC=8,
∴BC=6.
∵EP⊥AB且∠A為公共角,
∴△AEP∽△ABC,

∵AP=x,

即AE=,PE=


當E與C重合時,CP⊥AB,
∴△APC∽△ACB,
∴CA2=AP•AB,
∴82=10AP,
AP=
因為P與A不重合,E與C不重合,
所以

點評:本題實際還是考查相似三角形的判定以及一次函數(shù)在幾何圖形中的應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2002•海淀區(qū))已知:二次函數(shù)y=x2-kx+k+4的圖象與y軸交于點C,且與x軸的正半軸交于A、B兩點(點A在點B左側(cè)).若A、B兩點的橫坐標為整數(shù),
(1)確定這個二次函數(shù)的解析式并求它的頂點坐標;
(2)若點D的坐標是(0,6),點P(t,0)是線段AB上的一個動點,它可與點A重合,但不與點B重合.設(shè)四邊形PBCD的面積為S,求S與t的函數(shù)關(guān)系式;
(3)若點P與點A重合,得到四邊形ABCD,以四邊形ABCD的一邊為邊,畫一個三角形,使它的面積等于四邊形ABCD的面積,并注明三角形高線的長.再利用“等底等高的三角形面積相等”的知識,畫一個三角形,使它的面積等于四邊形ABCD的面積(畫示意圖,不寫計算和證明過程).

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《反比例函數(shù)》(02)(解析版) 題型:填空題

(2002•海淀區(qū))已知函數(shù)y=kx的圖象經(jīng)過點(2,-6),則函數(shù)y=的解析式可確定為   

查看答案和解析>>

科目:初中數(shù)學 來源:2002年北京市海淀區(qū)中考數(shù)學試卷(解析版) 題型:解答題

(2002•海淀區(qū))已知:二次函數(shù)y=x2-kx+k+4的圖象與y軸交于點C,且與x軸的正半軸交于A、B兩點(點A在點B左側(cè)).若A、B兩點的橫坐標為整數(shù),
(1)確定這個二次函數(shù)的解析式并求它的頂點坐標;
(2)若點D的坐標是(0,6),點P(t,0)是線段AB上的一個動點,它可與點A重合,但不與點B重合.設(shè)四邊形PBCD的面積為S,求S與t的函數(shù)關(guān)系式;
(3)若點P與點A重合,得到四邊形ABCD,以四邊形ABCD的一邊為邊,畫一個三角形,使它的面積等于四邊形ABCD的面積,并注明三角形高線的長.再利用“等底等高的三角形面積相等”的知識,畫一個三角形,使它的面積等于四邊形ABCD的面積(畫示意圖,不寫計算和證明過程).

查看答案和解析>>

科目:初中數(shù)學 來源:2002年北京市海淀區(qū)中考數(shù)學試卷(解析版) 題型:填空題

(2002•海淀區(qū))已知函數(shù)y=kx的圖象經(jīng)過點(2,-6),則函數(shù)y=的解析式可確定為   

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(04)(解析版) 題型:解答題

(2002•海淀區(qū))如圖,在菱形ABCD中,AE⊥BC于E點,EC=1,sinB=,求四邊形AECD的周長.

查看答案和解析>>

同步練習冊答案