(2010•潼南縣)如圖,四邊形ABCD是邊長為1的正方形,四邊形EFGH是邊長為2的正方形,點D與點F重合,點B,D(F),H在同一條直線上,將正方形ABCD沿F?H方向平移至點B與點H重合時停止,設點D、F之間的距離為x,正方形ABCD與正方形EFGH重疊部分的面積為y,則能大致反映y與x之間函數(shù)關系的圖象是( )
A.
B.
C.
D.
【答案】分析:正方形ABCD與正方形EFGH重疊部分主要分為3個部分,是個分段函數(shù),分別對應三種情況中的對應函數(shù)求出來即可得到正確答案.
解答:解:DF=x,正方形ABCD與正方形EFGH重疊部分的面積為y
①y=DF2=x2(0≤x<);
②y=1(≤x<2);
③∵BH=3-x
∴y=BH2=x2-3x+9(2≤x<3).
綜上可知,圖象是
故選B.
圖:①







點評:解決有關動點問題的函數(shù)圖象類習題時,關鍵是要根據(jù)條件找到所給的兩個變量之間的函數(shù)關系,尤其是在幾何問題中,更要注意基本性質的掌握和靈活運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•潼南縣)如圖,已知拋物線y=+bx+c與y軸相交于C,與x軸相交于A、B,點A的坐標為(2,0),點C的坐標為(0,-1).
(1)求拋物線的解析式;
(2)點E是線段AC上一動點,過點E作DE⊥x軸于點D,連接DC,當△DCE的面積最大時,求點D的坐標;
(3)在直線BC上是否存在一點P,使△ACP為等腰三角形?若存在,求點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《反比例函數(shù)》(06)(解析版) 題型:解答題

(2010•潼南縣)如圖,已知在平面直角坐標系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(m≠0)的圖象相交于A、B兩點,且點B的縱坐標為-,過點A作AC⊥x軸于點C,AC=1,OC=2.
求:(1)求反比例函數(shù)的解析式;
(2)求一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2010•潼南縣)如圖,已知在平面直角坐標系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(m≠0)的圖象相交于A、B兩點,且點B的縱坐標為-,過點A作AC⊥x軸于點C,AC=1,OC=2.
求:(1)求反比例函數(shù)的解析式;
(2)求一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年重慶市潼南縣中考數(shù)學試卷(解析版) 題型:解答題

(2010•潼南縣)如圖,已知拋物線y=+bx+c與y軸相交于C,與x軸相交于A、B,點A的坐標為(2,0),點C的坐標為(0,-1).
(1)求拋物線的解析式;
(2)點E是線段AC上一動點,過點E作DE⊥x軸于點D,連接DC,當△DCE的面積最大時,求點D的坐標;
(3)在直線BC上是否存在一點P,使△ACP為等腰三角形?若存在,求點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年重慶市潼南縣中考數(shù)學試卷(解析版) 題型:解答題

(2010•潼南縣)如圖,已知在平面直角坐標系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(m≠0)的圖象相交于A、B兩點,且點B的縱坐標為-,過點A作AC⊥x軸于點C,AC=1,OC=2.
求:(1)求反比例函數(shù)的解析式;
(2)求一次函數(shù)的解析式.

查看答案和解析>>

同步練習冊答案