已知a,b,c為實(shí)數(shù),且多項(xiàng)式x3+ax2+bx+c能被多項(xiàng)式x2+3x-4整除,
(1)求4a+c的值;
(2)求2a-2b-c的值;
(3)若a,b,c為整數(shù),且c≥a>1,試確定a,b,c的值.
(1)∵x2+3x-4是x3+ax2+bx+c的一個(gè)因式,
∴x2+3x-4=0,即x=-4,x=1是方程x3+ax2+bx+c=0的解,
a+b+c=-1…①
16a-4b+c=64…②

①×4+②得4a+c=12③;

(2)由③得a=3-
c
4
,④
代入①得b=-4-
3
4
c⑤,
∴2a-2b-c=2(3-
c
4
)-2(-4-
3
4
c)-c=14;

(3)∵c≥a>1,又a=3-
c
4
,
∴a=3-
c
4
<3,
即1<3-
c
4
<3,
解得
12
5
<c<8,
又∵a、c是大于1的正整數(shù),
∴c=3、4、5、6、7,但a=3-
c
4
,a也是正整數(shù),
∴c=4,
∴a=2,
∴b=-4-
3
4
c=-7.
故a=2,b=-7,c=4.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知a,b,c為實(shí)數(shù),且滿足下式:a2+b2+c2=1,①,a(
1
b
+
1
c
)+b(
1
c
+
1
a
)+c(
1
a
+
1
b
)=-3
;②求a+b+c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知a、b、c為實(shí)數(shù),設(shè)A=a2-2b+
π
3
,B=b2-2c+
π
3
,C=c2-2a+
π
3

(1)判斷A+B+C的符號(hào)并說明理由;
(2)證明:A、B、C中至少有一個(gè)值大于零.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知a、b、c為實(shí)數(shù),且
ab
a+b
=
1
3
,
bc
b+c
=
1
4
ca
c+a
=
1
5
.求
abc
ab+bc+ca
的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、已知a,b,c為實(shí)數(shù),下列命題中,假命題是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知a,b,c為實(shí)數(shù),且多項(xiàng)式x3+ax2+bx+c能夠被x2+3x-4整除.
(1)求4a+c的值;
(2)求2a-2b-c的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案