【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過點(diǎn)(0,1)和(﹣1,0).下列結(jié)論:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤當(dāng)x>﹣1時(shí),y>0,其中正確結(jié)論的個(gè)數(shù)是
A.5個(gè) B.4個(gè) C.3個(gè) D.2個(gè)
【答案】B
【解析】
∵二次函數(shù)y=ax2+bx+c(a≠0)過點(diǎn)(0,1)和(﹣1,0),∴c=1,a﹣b+c=0。
①∵拋物線的對稱軸在y軸右側(cè),∴x>0。∴a與b異號。∴ab<0,正確。
②∵拋物線與x軸有兩個(gè)不同的交點(diǎn),∴b2﹣4ac>0。
∵c=1,∴b2﹣4a>0,即b2>4a。正確。
④∵拋物線開口向下,∴a<0。
∵ab<0,∴b>0。
∵a﹣b+c=0,c=1,∴a=b﹣1。∴b﹣1<0,即b<1。∴0<b<1,正確。
③∵a﹣b+c=0,∴a+c=b。∴a+b+c=2b>0。
∵b<1,c=1,a<0,∴a+b+c=a+b+1<a+1+1=a+2<0+2=2。∴0<a+b+c<2,正確。
⑤拋物線y=ax2+bx+c與x軸的一個(gè)交點(diǎn)為(﹣1,0),設(shè)另一個(gè)交點(diǎn)為(x0,0),則x0>0,
由圖可知,當(dāng)﹣1<x<x0時(shí),y>0;當(dāng)x>x0時(shí),y<0。
∴當(dāng)x>﹣1時(shí),y>0的結(jié)論錯(cuò)誤。
綜上所述,正確的結(jié)論有①②③④。故選B。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是弧AB所對弦AB上一動(dòng)點(diǎn),過點(diǎn)P作PC⊥AB交AB于點(diǎn)P,作射線AC交弧AB于點(diǎn)D.已知AB=6cm,PC=1cm,設(shè)A,P兩點(diǎn)間的距離為xcm,A,D兩點(diǎn)間的距離為ycm.(當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),y的值為0)
小平根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小平的探究過程,請補(bǔ)充完整:
(1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測量,分別得到了y與x的幾組對應(yīng)值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0 | 4.24 | 5.37 | m | 5.82 | 5.88 | 5.92 |
經(jīng)測量m的值是 (保留一位小數(shù)).
(2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)值所對應(yīng)的點(diǎn)(x,y),并畫出函數(shù)y的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)∠PAC=30°,AD的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面內(nèi)任意一個(gè)角的“夾線圓”,給出如下定義:如果一個(gè)圓與這個(gè)角的兩邊都相切,則稱這個(gè)圓為這個(gè)角的“夾線圓”.例如:在平面直角坐標(biāo)系xOy中,以點(diǎn)(1,1)為圓心,1為半徑的圓是x軸與y軸所構(gòu)成的直角的“夾線圓”.
(1)下列各點(diǎn)中,可以作為x軸與y軸所構(gòu)成的直角的“夾線圓”的圓心的點(diǎn)是哪些;
A(2,2),B(3,1),C(-1,0),D(1,-1)
(2)若⊙P為y軸和直線 l:所構(gòu)成的銳角的“夾線圓”,且⊙P的半徑為1,求點(diǎn)P的坐標(biāo).
(3)若 ⊙Q為x軸和直線所構(gòu)成的銳角的“夾線圓”,且⊙Q的半徑,直接寫出點(diǎn)Q橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為Rt△ABC斜邊AB上的一點(diǎn),以OA為半徑的⊙O與BC切于點(diǎn)D,與AC交于點(diǎn)E,連接AD.
(1)求證:AD平分∠BAC;
(2)若∠BAC=60°,OA=2,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)運(yùn)動(dòng)隊(duì)有短跑、長跑、跳遠(yuǎn)、實(shí)心球四個(gè)訓(xùn)練小隊(duì),現(xiàn)將四個(gè)訓(xùn)練小隊(duì)隊(duì)員情況繪制成如下不完整的統(tǒng)計(jì)圖:
(l)學(xué)校運(yùn)動(dòng)隊(duì)的隊(duì)員總?cè)藬?shù)為 人,扇形統(tǒng)計(jì)圖中短跑訓(xùn)練小隊(duì)所對應(yīng)圓心角的度數(shù)為 ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并標(biāo)明數(shù)據(jù);
(3)若在短跑訓(xùn)練小組中隨機(jī)選取2名同學(xué)進(jìn)行比賽,請用列舉法(畫樹狀圖或列表)求所選取的這兩名同學(xué)恰好是一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=x2+bx+c過點(diǎn)A(1,0),C(0,﹣3)
(1)求此二次函數(shù)的解析式;
(2)在拋物線上存在一點(diǎn)P使△ABP的面積為10,請直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校食堂廚房的桌子上整齊地?cái)[放著若干相同規(guī)格的碟子,碟子的個(gè)數(shù)與碟子的高度的關(guān)系如下表:
碟子的個(gè)數(shù) | 碟子的高度(單位:cm) |
1 | 2 |
2 | 2+1.5 |
3 | 2+3 |
4 | 2+4.5 |
… | … |
(1)當(dāng)桌子上放有x(個(gè))碟子時(shí),請寫出此時(shí)碟子的高度(用含x的式子表示);
(2)分別從三個(gè)方向上看,其三視圖如上圖所示,廚房師傅想把它們整齊疊成一摞,求疊成一摞后的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形,點(diǎn)在上,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)至,點(diǎn),分別為點(diǎn),旋轉(zhuǎn)后的對應(yīng)點(diǎn),連接,,,與交于點(diǎn),與交于點(diǎn).
(1)求證;
(2)直接寫出圖中已經(jīng)存在的所有等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖示二次函數(shù)y=ax2+bx+c的對稱軸在y軸的右側(cè),其圖象與x軸交于點(diǎn)A(﹣1,0)與點(diǎn)C(x2,0),且與y軸交于點(diǎn)B(0,﹣2),小強(qiáng)得到以下結(jié)論:①0<a<2;②﹣1<b<0;③c=﹣1;④當(dāng)|a|=|b|時(shí)x2>﹣1;以上結(jié)論中正確結(jié)論的序號為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com