如圖,在△ABC中AC=BC,∠ACB=90°,以BC為直徑作⊙O,連接OA,交⊙O于點(diǎn)D,過(guò)D點(diǎn)作⊙O的切線交AC于點(diǎn)E,連接B、D并延長(zhǎng)交AC于點(diǎn)F.則下列結(jié)論錯(cuò)誤的是( )

A.△ADE∽△ACO
B.△AOC∽△BFC
C.△DEF∽△DOC
D.CD2=DF•DB
【答案】分析:根據(jù)相似三角形的判定定理,對(duì)各選項(xiàng)的三角形進(jìn)行分析證明,然后利用排除法求解.
解答:解:A、∵DE是⊙O的切線,
∴∠ADE=90°,
∵∠ACB=90°,
∴∠ADE=∠ACB,
∵∠DAE=∠CAO,
∴△ADE∽△ACO;
故本選項(xiàng)正確;
B、假設(shè)△AOC∽△BFC,
則有∠OAC=∠FBC,
∵∠ACB=90°,以BC為直徑作⊙O,
∴AC是⊙O的切線,
∴∠ACD=∠FBC,
∵∠ODC=∠OAC+∠ACD=2∠OAC,∠COD=2∠FBC(三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和),
∴∠ODC=∠COD,
∴OC=CD,
又∵OD=OC,
∴OC=CD=OD,
即△OCD是等邊三角形,∠AOC=60°,
∴AC=OC①,
而在△ABC中,AC=BC,BC=2OC,
∴AC=2OC②,
∴假設(shè)與題目條件相矛盾,
故假設(shè)不成立,所以△AOC與△BFC不相似;
故本選項(xiàng)錯(cuò)誤;
C、∵∠ACB=90°,
∴∠CBD+∠BFC=90°,
∴BC是⊙O的直徑,
∴∠CBD+∠BCD=90°,
∴∠BCD=∠BFC,
∵DE是⊙O的切線,AC是⊙O的切線,
∴∠CDE=∠CED=∠CBD,
又∵∠AED=∠CDE+∠CED=2∠CBD,
∠COD=2∠CBD,
∴∠AED=∠COD,
在△DEF∽△DOC中,
∴△DEF∽△DOC,
故本選項(xiàng)正確;
D、∵BC為⊙O的直徑,
∴∠CDB=90°,
∴CD⊥BF,
∵∠ACB=90°,
∴CD2=DF•DB,
故本選項(xiàng)正確.
故選B.
點(diǎn)評(píng):本題主要考查了相似三角形的判定,圓周角定理以及切線的性質(zhì),本題利用反證法,先假設(shè)成立,再推出矛盾,從而推翻假設(shè),題目綜合性較強(qiáng),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案